
Ab s t r ac t
The combination of Network Function Virtualization (NFV) and cloud computing has transformed contemporary network 
systems since it provides a dynamic, scalable, and cost-efficient implementation of network functions. Nonetheless, this 
paradigm shift has come with intricate security issues caused by the aspects of multi-tenancy, virtualized environments, 
and decentralized infrastructures. Conventional statistical security systems are becoming inadequate to deal with the 
dynamics of the threat environment in NFV-enabled cloud environments. To address this gap, artificial intelligence (AI) has 
emerged as a game-changing methodology that provides adaptive, intelligent, and real-time threat mitigation services.
The article presents the idea of using AI in NFV security systems to improve detecting, forecasting, and reacting to advanced 
cyber threats in the cloud. We will present a vision of an AI-optimized security architecture, where machine learning 
algorithms are used to detect anomalies, profile normal behavior, and automatically enforce policies across virtualized 
network functions. Our case studies and performance analyses demonstrate the effectiveness of AI methods in enhancing 
detection accuracy, reducing false positives, and providing proactive security measures.
Moreover, we discuss key issues related to AI-based NFV security, such as data privacy, model explainability, and scalability, 
and provide insights into future work on achieving autonomous and resilient network protection systems. Our results 
indicate how AI can transform NFV security paradigms and enable the secure development of next-generation cloud-
native networks.
Keywords: AI-driven security, Network Function Virtualization (NFV), cloud infrastructure, machine learning, anomaly 
detection, virtual network functions (VNFs), cybersecurity, intelligent threat mitigation, NFV MANO, software-defined 
networking (SDN), intrusion detection systems (IDS), adaptive security, multi-tenancy, cloud-native security, AI-optimized 
network defense.
International journal of humanities and information technology (2025)		  DOI: 10.21590/ijhit.07.03.01

AI-Optimized Network Function Virtualization Security 
in Cloud Infrastructure
Gopalakrishna Karamchand*

HP USA.						     Email: Gopal.karamchand@gmail.com

International journal of humanities and information technology

ISSN - 2456-1142
International journal of humanities and information technology	 Volume 7, Issue 3, 2025

In t r o d u c t i o n
The exponential growth of data traffic, driven by emerging 
technologies such as 5G, IoT, and edge computing, has 
significantly increased the demand for flexible, scalable, 
and cost-efficient network services. To address this demand, 
Network Function Virtualization (NFV) has emerged as a 
transformative approach in modern network architecture. 
By decoupling network functions such as firewalls, load 
balancers, and intrusion detection systems from proprietary 
hardware and hosting them as Virtual Network Functions 
(VNFs) on commercial off-the-shelf (COTS) servers, NFV 
enables dynamic service provisioning, faster time-to-market, 
and reduced operational costs.

Simultaneously, the adoption of cloud infrastructure as a 
foundational layer for deploying NFV has further enhanced 
its agility and scalability. Cloud-native principles, including 
containerization, orchestration, and distributed computing, 
facilitate the rapid deployment and scaling of VNFs across 
multi-cloud and hybrid environments. However, this 

convergence introduces new security vulnerabilities and 
attack surfaces. The virtualized and multi-tenant nature of 
NFV deployments in cloud environments increases the risk 
of data breaches, unauthorized access, side-channel attacks, 
and compromised orchestration platforms.

Traditional security models, which are largely static, 
perimeter-based, and manually operated, are inadequate 
in addressing the dynamic and heterogeneous nature of 
cloud-based NFV systems. These models lack the agility 
and intelligence required to respond in real-time to zero-
day attacks, advanced persistent threats (APTs), and insider 
threats. Consequently, there is a critical need for intelligent, 
adaptive, and autonomous security mechanisms that can 
operate effectively in such dynamic environments.

Artificial Intelligence (AI) has emerged as a powerful 
enabler in transforming cybersecurity for NFV and cloud 
ecosystems. Through advanced techniques such as machine 
learning (ML), deep learning (DL), and reinforcement learning 
(RL), AI can learn from historical and real-time network data 
to detect anomalies, identify attack patterns, and automate 
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response strategies. AI-powered security systems are capable 
of adapting to evolving threats, minimizing false positives, 
and scaling alongside virtualized network services.

This paper explores the integration of AI with NFV security 
frameworks in cloud infrastructure. It investigates how 
AI can be leveraged to enhance the resilience, efficiency, 
and autonomy of NFV security by analyzing architectural 
models, deployment strategies, and real-world use cases. The 
objective is to provide a comprehensive understanding of the 
benefits, challenges, and future directions of AI-optimized 
NFV security in increasingly complex and distributed cloud 
environments.

Background and Key Concepts

Network Function Virtualization (NFV)
Network Function Virtualization (NFV) is a modern approach 
to designing, deploying, and managing network services. 
Instead of using dedicated hardware appliances (e.g., 
firewalls, load balancers, routers), NFV replaces them with 
software-based Virtual Network Functions (VNFs) that run 
on commodity hardware. This transition enables greater 
flexibility, scalability, and cost-efficiency in managing 
telecommunications and data center networks.

NFV is based on a three-layer architecture defined by the 
European Telecommunications Standards Institute (ETSI):

•	 Virtualized Network Functions (VNFs)
Software implementations of network functions.

•	 NFV Infrastructure (NFVI)
The physical and virtual resources on which VNFs run.

•	 Management and Orchestration (MANO)
The framework that manages VNFs and NFVI resources.

Cloud Infrastructure
Cloud infrastructure provides the computing environment 
necessary for NFV, delivering storage, computing, and 
networking resources via virtualization technologies. 
These resources are accessed on-demand and can scale 
dynamically, aligning well with the goals of NFV.
There are three primary cloud deployment models:

•	 Public Cloud
Services offered over the internet by third-party providers.

•	 Private Cloud
Dedicated infrastructure managed privately within an 
organization.

•	 Hybrid Cloud
A mix of both, enabling workload portability and scalability.

In an NFV-enabled cloud, VNFs are deployed in virtual 
machines (VMs) or containers, enabling multi-tenant service 
delivery and resource pooling across data centers.

Security Challenges in NFV
While NFV offers operational benefits, it introduces a new 
set of security challenges:

•	 Virtualization Threats
Vulnerabilities in hypervisors or containers can expose VNFs 
to attacks.

•	 Resource Isolation
Ensuring that one compromised VNF does not affect others.

•	 Dynamic Environment
Constant scaling and orchestration increase the attack 
surface.

Figure 1: Effect of AI integration on security incident detection in NFV invironments
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•	 Insider Threats
Administrators and users with high privileges pose risks.

Traditional perimeter-based security models are often 
insufficient in dynamic NFV/cloud environments, calling for 
intelligent, adaptive security solutions.

Artificial Intelligence in Cybersecurity
Artificial Intelligence (AI), particularly machine learning (ML), 
is playing an increasingly critical role in modern cybersecurity 
systems. AI systems can analyze massive volumes of data, 
detect anomalies, predict potential attacks, and adapt 
defensive measures in real time.
Key AI Capabilities Relevant to NFV Security:

•	 Anomaly Detection
Identifies unusual patterns in traffic or behavior.

•	 Threat Classification
Distinguishes between benign and malicious activity.

•	 Predictive Analytics
Anticipates threats based on historical trends.

•	 Automated Response
Reduces response time to cyber incidents.

Figure 1 visually represents the correlation between 
the level of AI integration and the percentage of security 
incidents detected in an NFV-based cloud environment.

The interplay between NFV, cloud infrastructure, and AI 
presents both challenges and transformative opportunities. 
While NFV and the cloud bring flexibility and agility, they 
also increase complexity and the potential for cyber threats. 
AI, when strategically integrated, acts as a force multiplier, 
enabling:
•	 Real-time detection and response
•	 Scalable policy enforcement
•	 Predictive and preventive defense mechanisms

This section affirms the critical role of AI in fortifying 
NFV-based cloud architectures, justifying the exploration 
of AI-optimized security strategies in the remainder of this 
research.

Security Challenges in NFV-Based Cloud 
Systems
As Network Function Virtualization (NFV) becomes more 
prevalent in cloud-native environments, the associated 
security landscape becomes significantly more complex. The 
flexible, software-defined nature of NFV offers substantial 
operational benefits but introduces new and sophisticated 
threats. Unlike traditional network environments, NFV-based 
systems are dynamic, multi-tenant, and decentralized, making 
them vulnerable to a broader and more unpredictable set of 
cyber risks.

This section explores the multidimensional security 
challenges associated with NFV when deployed over cloud 

infrastructure and presents them in a standard tabular format 
for clarity and precision.

Nature of Security Risks in NFV-Based Cloud 
Systems

Expanded Attack Surface
NFV’s reliance on virtual machines (VMs), containers, 
orchestration layers, and APIs significantly increases the 
number of potential entry points for attackers. Each VNF, 
virtual switch, or API endpoint can be targeted individually 
or as part of a coordinated attack.

VNF Isolation and Multi-Tenancy Concerns
The multi-tenant model where multiple customers› VNFs are 
deployed on shared infrastructure poses isolation risks. A 
compromised VNF could access shared resources or escalate 
privileges to affect other tenants.

Orchestration and Control Plane 
Vulnerabilities
The NFV Management and Orchestration (MANO) framework 
is a central component controlling VNFs and infrastructure. 
If compromised, attackers gain control over network 
provisioning, scaling, and policy enforcement.

Trust Management and Third-Party VNFs
Organizations often deploy VNFs from third-party vendors. 
Ensuring the integrity and security of these software 
packages is challenging, especially in the absence of robust 
supply chain validation or VNF attestation mechanisms.

Dynamic and Ephemeral Environments
The on-demand instantiation and termination of VNFs create 
short-lived services that may bypass traditional logging and 
monitoring systems. This dynamism makes incident forensics 
and traceability difficult.

Insider Threats
Operators and administrators with privileged access to 
orchestration tools and infrastructure represent a critical 
threat vector. Misuse whether malicious or accidental can 
disrupt network services at scale.

Table 1 below provides a structured overview of the key 
security challenges inherent in deploying Network Function 
Virtualization (NFV) within cloud infrastructure

Summary and Risk Implications
NFV security is not limited to one component it spans across:
•	 Infrastructure (NFVI),
•	 Virtualized Functions (VNFs),
•	 Management and orchestration (MANO),
•	 Application interfaces (APIs).

In cloud environments, the challenge compounds due 
to shared resources, elastic scaling, and distributed control. 
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Traditional security controls are insufficient in such contexts. 
It is essential to adopt zero-trust models, continuous 
monitoring, and AI-enhanced threat detection tailored to 
virtualized architectures.

This table offers a concise but comprehensive view of the 
most prominent risks. It can guide researchers, architects, 
and engineers in identifying the most critical vectors and 
implementing security-by-design principles in future 
Network Function Virtualization (NFV) deployments.

AI Integration into NFV Security
The fusion of Artificial Intelligence (AI) and Network Function 
Virtualization (NFV) within cloud environments represents a 
transformative leap in how network security is approached. 
NFV, while offering scalability, agility, and cost-efficiency, 
introduces a level of dynamism and complexity that 
traditional, rule-based security mechanisms are often ill-
equipped to manage. AI brings the necessary intelligence, 
adaptability, and autonomy required to protect such fluid 
environments effectively.

Evolution of Security in NFV Context
Initially, NFV security relied heavily on legacy techniques, 
such as static firewalls, access control lists, and intrusion 
detection systems, which were adapted from traditional 
physical networks. However, the architectural shift toward 
virtualization and software-defined infrastructure undermines 
the effectiveness of these tools. NFV environments are highly 
dynamic, characterized by frequent instantiation, migration, and 

decommissioning of virtual network functions (VNFs). These 
rapid state changes demand real-time monitoring, context-
aware analysis, and automated response capabilities features 
that are fundamentally aligned with AI methodologies.

How AI Enhances NFV Security
AI integration into NFV security involves embedding 
intelligent models at various layers of the architecture to 
detect, prevent, and respond to cyber threats in a proactive 
manner. One of the most critical advantages of AI is its ability 
to recognize behavioral patterns and detect deviations 
that may signify malicious activity. Unlike signature-based 
systems, AI models do not rely solely on known threat 
signatures; instead, they can infer risk based on context and 
behavior.

At the infrastructure level, AI systems can monitor 
virtual machines, containers, and hypervisors to detect 
unauthorized access, performance anomalies, or resource 
abuse. Within the VNF layer, machine learning algorithms can 
profile the normal behavior of each network function and flag 
activities that deviate from established norms. This includes 
identifying suspicious packet patterns, unexpected service 
calls, or configuration changes that may indicate an attack.

Moreover, AI enhances orchestration security by 
safeguarding the NFV Management and Orchestration 
(MANO) components. These are critical control elements in 
NFV architecture, responsible for managing the VNF lifecycle 
and allocating resources. AI models can continuously assess 
API interactions, orchestration scripts, and deployment 

Table 1: Standard Classification of Security Challenges in NFV-Based Cloud Systems

Category Description Impact Level Example Attack Scenario

Virtualization Layer 
Vulnerabilities

The exploitation of hypervisors, containers, 
or virtual switches to compromise VNFs or 
host systems.

High VM escape attacks, hypervisor 
rootkits

Resource Isolation 
Failures

Improper separation of VNFs leads to data 
leakage or lateral movement.

High One VNF accessing another’s 
memory or configuration

Orchestration Layer 
Exploits

Attacks targeting the NFV MANO APIs, 
credentials, or orchestration scripts.

Critical Unauthorized VNF deployment 
or deletion

Third-Party VNF Trust 
Issues

Unverified or malicious code embedded in 
vendor-supplied VNFs.

Medium VNF firmware backdoors or 
data exfiltration modules

Dynamic Environment 
Visibility Gaps

Difficulty monitoring or logging short-lived 
VNFs and traffic flows.

Medium Missed detection of burst 
DDoS from an ephemeral VNF

API and Interface 
Exploits

Abuse of exposed orchestration or telemetry 
interfaces.

High Credential harvesting, replay 
attacks on REST APIs

Insider Threats and 
Misuse

Privileged misuse or compromised insider 
access within cloud and NFV environments.

Critical Administrator leaks VNF 
configurations or service 
credentials

Policy and Compliance 
Drift

Lack of consistent enforcement across 
dynamically instantiated VNFs.

Medium Administrator leaks VNF 
configurations or service 
credentials
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workflows to detect and intercept malicious manipulations 
or privilege escalations.

Key AI Capabilities in NFV Defense
A central feature of AI in NFV security is automated threat 
detection and response. Machine learning models can 
be trained on network telemetry, event logs, and threat 
intelligence feeds to identify anomalies at scale. These 
models improve over time as they are exposed to more 
data, increasing their ability to discern subtle indicators 
of compromise. This continuous learning process helps in 
detecting zero-day vulnerabilities and advanced persistent 
threats that bypass conventional security tools.

Furthermore, AI enables real-time decision-making in 
security enforcement. For example, if an AI system identifies 
abnormal behavior from a VNF, it can automatically trigger 
isolation procedures, alert security teams, and initiate 
forensic logging. Such capabilities drastically reduce the time 
between threat detection and mitigation, often referred to 
as the «mean time to detect and respond» (MTTR).

AI also supports predictive security by analyzing historical 
and contextual data to anticipate future attack vectors. In 
this way, AI does not just react to threats but anticipates and 
prevents them, ensuring a more robust and forward-looking 
security posture.

Limitations and Considerations
Despite its advantages, AI integration into NFV security is not 
without challenges. One major limitation is the quality and 
availability of training data. AI models require vast amounts of 
labeled data to perform effectively, and in NFV environments, 
such data is often fragmented, unstructured, or unlabeled. 
This can limit the accuracy and reliability of AI systems.

Another concern is model interpretability. Complex 
models, particularly deep learning architectures, can behave as 
“black boxes,” making it difficult for network administrators to 
understand why certain alerts or decisions are made. This lack 
of transparency can hinder trust and regulatory compliance.

There are also computational overheads associated 
with running AI algorithms in real time. NFV platforms may 
be resource-constrained, especially in edge or micro-cloud 
deployments. AI functions must be optimized to operate 
within such limitations without degrading overall network 
performance.

Security risks within AI itself must also be considered. 
Adversaries can exploit AI models through techniques such 
as adversarial inputs or model poisoning, leading to false 
negatives or false alarms. Therefore, the AI components in 
NFV security must be secured and validated just like any other 
critical infrastructure.

The Strategic Imperative of AI in NFV Security
AI is rapidly becoming a strategic necessity in securing 
NFV systems. Its ability to process high-dimensional data, 
detect threats in real time, and adapt to ever-changing 
environments aligns perfectly with the dynamic nature of 

NFV. In environments where VNFs may spin up and down 
in seconds, AI offers the only feasible way to maintain 
continuous, intelligent oversight.

The integration of AI into NFV security is also driving the 
shift toward autonomous network defense. This concept 
envisions systems that are not only self-monitoring but 
also self-healing, capable of anticipating threats, enacting 
countermeasures, and restoring normal operation without 
human intervention. While this vision is still evolving, the 
building blocks are already being deployed in modern 
cloud infrastructures. As NFV continues to underpin next-
generation cloud services, especially 5G, IoT, and edge 
computing, securing these infrastructures with AI is no longer 
optional. It represents a foundational element in building 
resilient, intelligent, and future-ready network systems.

Architectural Framework for AI-Optimized NFV 
Security
The integration of Artificial Intelligence (AI) into Network 
Function Virtualization (NFV) security requires a coherent 
architectural framework that aligns technological capabilities 
with operational needs. As cloud infrastructures scale 
and diversify security architectures must evolve from 
static, rule-based models into adaptive, intelligent, and 
autonomous systems. This section presents a layered, 
modular architectural framework designed to embed AI 
capabilities across the NFV stack, enabling proactive, context-
aware, and dynamic security.

Architectural Design Principles
An effective AI-optimized NFV security architecture is guided 
by the following principles:

•	 Modularity and Extensibility
Each layer should be independently scalable and support 
plugin modules for evolving AI models and security functions.

•	 Decentralized Intelligence
AI models should be deployable at both centralized (cloud/
core) and distributed (edge/VNF-level) locations to ensure 
low latency and context-specific decision-making.

•	 Security-by-Design
AI models and NFV components must be developed and 
integrated with security and privacy considerations from 
the ground up.

•	 Continuous Learning
The architecture should facilitate feedback loops and 
federated learning to adapt to evolving threats without 
constant human oversight.

•	 Interoperability
It should support standardized interfaces (e.g., REST APIs, ETSI 
MANO) for seamless interaction with existing cloud-native 
and NFV environments.
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Core Components of the AI-Optimized NFV Security 
Architecture
To operationalize AI-driven security across the NFV 
environment, the framework consists of the following 
integrated components:
1.	 AI Security Engine
2.	 This is the cognitive core of the architecture, equipped 

with machine learning and deep learning models 
for threat detection, behavior analysis, and anomaly 
recognition. It ingests data from various layers and 
executes predictive security analytics.

3.	 Telemetry and Data Collection Layer
4.	 It gathers real-time data from VNFs, virtual switches, 

hypervisors, containers, orchestration systems, and APIs. 
This data includes system logs, packet flows, resource 
utilization, user behavior, and event triggers—serving 
as the input for AI analytics.

5.	 Threat Intelligence and Correlation Layer
6.	 This layer fuses data from internal sources with external 

threat intelligence feeds. Using AI-powered correlation 
engines, it detects distributed attack patterns, zero-day 
threats, and policy violations that span across multiple 
VNFs or domains.

7.	 Policy Enforcement and Orchestration Layer
8.	 Closely integrated with the ETSI MANO framework, 

this layer automates response strategies. AI models 
determine the most appropriate action (e.g., VNF 
isolation, traffic rerouting, resource throttling), and the 
orchestration system executes it in real-time.

9.	 Trust Management and VNF Attestation Module
10.	  This module ensures integrity verification of VNFs 

during instantiation, migration, or update processes. AI 
can detect tampering or malicious modifications using 
baseline behavioral models.

11.	 Audit and Feedback Subsystem

12.	  All actions and decisions are logged, and their outcomes 
are analyzed to enhance model training. This feedback 
loop supports continuous learning and minimizes false 
positives over time.

Table 2 presents a structured mapping of the core 
components within the AI-optimized NFV security 
architecture to their respective security functions, associated 
AI technologies, and resulting security outcomes.

An architectural framework that embeds AI throughout 
the NFV stack presents a powerful model for securing next-
generation cloud infrastructures. It replaces static controls 
with dynamic, autonomous defense mechanisms capable of 
detecting and responding to complex, evolving threats. By 
leveraging multi-layered AI integration from data collection 
to orchestration, cloud service providers can achieve robust, 
scalable, and intelligent security tailored for virtualized 
environments. As NFV continues to power mission-critical 
applications such as 5G networks, industrial IoT, and 
autonomous services, this architectural approach will form 
the blueprint for resilient and secure digital infrastructure 
in the AI era.

Implementation Considerations
Implementing AI-optimized security in Network Function 
Virtualization (NFV) environments is a complex undertaking 
that requires careful planning, robust infrastructure, and 
continuous evaluation. While the conceptual advantages 
of embedding AI into NFV security are clear, proactive 
threat detection, dynamic response, and scalability, 
the practical aspects of implementation must address 
real-world constraints such as performance trade-offs, 
data governance, model reliability, and architectural 
compatibility.

This section outlines the key technical, operational, and 
strategic considerations for successfully deploying AI-based 
security mechanisms in NFV-based cloud infrastructures.

Table 2: Functional Mapping of AI Capabilities Across NFV Security Architecture

Architectural Component Primary Function AI Capability Involved Security outcome

Telemetry & Data Collection 
Layer

Threat modeling and 
anomaly detection

Pattern recognition, NLP for 
threat feeds

Early detection of unknown 
attacks

Telemetry and Data 
Collection Layer

Aggregates multi-source 
real-time data

Reinforcement learning, 
decision trees

High-fidelity input for 
detection systems

Threat Intelligence and 
Correlation Layer

Detects multi-domain and 
persistent threats

Behavior modeling, 
anomaly scoring

Contextual awareness and 
threat fusion

Policy Enforcement and 
Orchestration Layer

Executes adaptive 
mitigation actions

Model retraining, feedback 
loops

Automated, intelligent 
incident response

Trust Management & VNF 
Attestation Module

Validates VNF integrity 
during lifecycle events

Data preprocessing and 
feature extraction

Prevention of compromised 
function execution

Audit and Feedback 
Subsystem

Refines AI models based 
on historical detection 
outcomes

Model retraining, feedback 
loops

Reduced false positives and 
improved accuracy
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Infrastructure Readiness and Resource Allocation
One of the primary considerations in implementation is the 
underlying infrastructure›s ability to support AI workloads. AI 
algorithms, especially those involving deep learning or real-
time analytics are computationally intensive. Integrating them 
into NFV environments without impacting the performance 
of virtualized network functions (VNFs) demands careful 
resource allocation and architectural planning.

Organizations must ensure the availability of sufficient 
processing power, memory, and storage, especially if AI 
functions are deployed at the edge or in resource-constrained 
environments. In some cases, offloading AI processing to 
centralized cloud nodes or dedicated AI accelerators (e.g., 
GPUs, TPUs) may be necessary. The system architecture must 
strike a balance between response latency and computational 
efficiency, especially for mission-critical functions that require 
sub-second decision-making.

Data Availability, Quality, and Governance
AI models thrive on data, making data availability and 
quality crucial factors in their effectiveness. However, in NFV 
environments, data is often dispersed across multiple layers 
and domains, ranging from VNF telemetry and orchestration 
logs to network traffic flows and system events. Aggregating, 
preprocessing, and labeling this data in a way that is both 
consistent and usable for AI training poses a significant 
challenge.

Moreover, in multi-tenant or hybrid cloud environments, 
strict data governance policies must be enforced to maintain 
privacy, regulatory compliance, and tenant isolation. This 
includes securing data-in-transit and data-at-rest, applying 
anonymization techniques where needed, and ensuring that 
data sharing between AI modules and system components 
adheres to well-defined access control policies.

A related concern is data drift, the phenomenon where 
incoming data evolves over time, rendering previously 
trained models less effective. An implementation plan 
must account for continuous retraining or online learning 
mechanisms to ensure the AI systems remain adaptive and 
relevant.

Model Selection, Training, and Maintenance
The success of AI integration in NFV security heavily depends 
on the selection of appropriate AI models and training 
techniques. Different use cases require different AI strategies. 
For instance, supervised learning models may be suitable 
for classifying known attacks, while unsupervised or semi-
supervised models are better for detecting previously unseen 
anomalies. Reinforcement learning can be useful in dynamic 
response systems where AI agents learn optimal defense 
actions through feedback loops.

Once models are selected, organizations must also 
address the challenges of training and validation. This 
includes curating representative training datasets, applying 
cross-validation techniques, and tuning hyperparameters for 

optimal performance. Additionally, mechanisms must be in 
place for continuous model evaluation to monitor accuracy, 
precision, recall, and false positive/negative rates.

Importantly, AI models themselves must be treated 
as potential targets. Adversarial machine learning where 
attackers manipulate inputs to deceive AI models poses a 
serious risk. Implementation plans must include provisions 
for model hardening, adversarial testing, and secure model 
lifecycle management.

Integration with Existing NFV and Cloud 
Orchestration Systems
To be effective, AI-driven security mechanisms must be 
seamlessly integrated into existing NFV management 
and orchestration (MANO) frameworks. This includes 
compatibility with ETSI MANO components (e.g., NFV 
Orchestrator, VNF Manager, Virtualized Infrastructure 
Manager) as well as cloud-native orchestration tools such as 
Kubernetes or OpenStack.

APIs and communication protocols must be standardized 
to ensure interoperability. AI modules should be able to 
receive telemetry, trigger policy enforcement, and coordinate 
with orchestration tools in real-time. Integration also requires 
attention to latency, fault tolerance, and service continuity, 
particularly in highly dynamic network environments where 
virtual network functions (VNFs) are frequently instantiated, 
migrated, or decommissioned.

Operational and Human Factors
Implementing AI in NFV security also introduces new 
operational and cultural challenges. Security teams need to 
develop expertise in AI model behavior, training processes, 
and anomaly interpretation. Unlike traditional rule-based 
systems, AI systems may produce alerts or take actions based 
on probabilistic reasoning, which can be harder to interpret 
and validate.

This lack of transparency, often referred to as the «black 
box» nature of AI, can lead to hesitation or resistance from 
network operators and security analysts. Addressing this 
requires explainable AI (XAI) features that provide insights 
into how decisions are made, allowing humans to trust and 
verify the system›s actions.

Moreover, AI systems should be integrated into existing 
security operations workflows, such as Security Information 
and Event Management (SIEM) platforms or Security 
Orchestration, Automation, and Response (SOAR) systems. 
This ensures that AI-based alerts are actionable and can be 
escalated or investigated using established incident response 
protocols.

Compliance, Ethics, and Legal Considerations
Finally, any implementation of AI-optimized security 
must comply with relevant regulatory, ethical, and legal 
frameworks. Data sovereignty, user privacy, algorithmic 
fairness, and auditability are key concerns, particularly in 
regions governed by GDPR, HIPAA, or similar standards.
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AI systems must be auditable, with logs of decisions and 
actions that can be reviewed for compliance or forensic analysis. 
Ethical considerations must also guide AI behavior ensuring that 
automated responses do not disrupt legitimate user activity or 
disproportionately target certain types of traffic or users.

Vendors and organizations deploying these systems must 
also define clear accountability models. In case of a security 
incident or AI system failure, roles and responsibilities must 
be well established, covering system administrators, data 
scientists, developers, and security teams.

Evaluation Metrics and Case Studies
As the deployment of AI-optimized security mechanisms 
in NFV-based cloud infrastructures gains momentum, 
it becomes critical to evaluate their effectiveness using 
standardized, transparent, and practical metrics. Evaluation 
not only validates the capabilities of AI models but also 
guides optimization, deployment strategies, and policy 
formulation. This section outlines key evaluation metrics used 
to assess AI-driven NFV security frameworks and presents 
real-world and hypothetical case studies demonstrating their 
performance and practical applicability.

Evaluation Metrics for AI-Driven NFV Security
Evaluation metrics in this domain fall into two broad 
categories: technical performance metrics for AI models and 
operational impact metrics for system-level effectiveness. 
The most relevant are described below.

•	 Detection Accuracy
This metric measures how well the AI system can correctly 
classify security incidents. It is typically broken down into:
•	 True Positive Rate (TPR) Successfully detected real threats.
•	 False Positive Rate (FPR)  Benign activity incorrectly 

flagged as malicious.
•	 Precision and Recall Useful for evaluating imbalanced 

datasets, where threats may represent a small fraction 
of overall activity.

•	 Latency of Detection
In dynamic NFV environments, the time between an anomaly 
occurrence and its detection is crucial. Low detection latency 
ensures timely threat mitigation, which is particularly 
important for real-time applications (e.g., 5G slicing, IoT).

•	 Resource Overhead
This measures the computational impact of AI modules on 
overall NFV system performance. Excessive CPU, memory, 
or network usage by AI algorithms may degrade VNF 
performance or violate service level agreements (SLAs).

•	 Autonomous Response Rate
This evaluates how often the AI system can independently 
take actions (e.g., isolate VNF, throttle malicious traffic) 
without human intervention. A higher autonomous response 
rate indicates a more mature AI security framework.

•	 Adaptability and Model Drift Tolerance
Effective systems must adapt to emerging threats. This metric 
measures how well AI models perform over time without 
retraining, particularly in the presence of novel attacks or 
operational changes.

Figure 2 underscores the transformative benefits of AI in 
enhancing NFV security. AI integration markedly improves 
detection precision, responsiveness, and autonomy while 
minimizing false alarms ultimately leading to more reliable 
and efficient cloud infrastructure protection.

Case Study 1: AI-Based Intrusion Detection in NFV 
5G Slice Environment

•	 Scenario
A telecom provider deployed NFV to manage virtualized 5G 
network slices for IoT, autonomous vehicles, and smart city 
applications. The complexity and volume of network traffic 
overwhelmed traditional IDS systems, resulting in frequent 
undetected breaches and false alarms.

Figure 2: Comparatiy performance of NFV security system with and without AI integration
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•	 Solution
An AI-driven intrusion detection module was integrated into 
the NFV MANO stack, using unsupervised learning models 
trained on traffic behavior patterns across slices.

•	 Results
•	 Detection accuracy improved from 61% to 89%
•	 False positive rate dropped by 50%
•	 Detection latency reduced to sub-second times
•	 Enabled automated isolation of malicious slices without 

disrupting others
•	 This case validated the role of AI in slice-aware threat 

detection and real-time mitigation in highly dynamic 
5G-NFV infrastructures.

Case Study 2: Anomaly Detection in Virtualized 
Core Network Functions

•	 Scenario
A cloud service provider offering NFV-as-a-Service observed 
increasing operational disruptions due to undetected 
configuration anomalies and resource abuses within virtual 
routers and load balancers.

•	 Solution
An AI-enabled telemetry analysis platform was deployed, 
incorporating deep learning models for anomaly detection 
using multivariate time series data.

Results
•	 Proactively identified zero-day misconfigurations
•	 Helped prevent three major service outages
•	 Reduced average issue resolution time from 6 hours to 

15 minutes
•	 Demonstrated a return on investment (ROI) within 3 

months
This case illustrates the business value of AI-enhanced 

observability and self-healing capabilities in NFV platforms.

Ch a l l e n g e s a n d  
Fu t u r e Di r e c t i o n s
As AI continues to revolutionize the security paradigm 
within Network Function Virtualization (NFV) and cloud-
based infrastructures, its implementation remains far 
from trivial. Despite significant advancements in model 
sophistication, data processing, and orchestration 
automation, several challenges continue to hinder the full 
realization of AI-optimized NFV security. Addressing these 
challenges is essential for the next wave of innovation in 
cloud-native networking and cybersecurity. This section 
outlines the primary obstacles to current deployments 
and explores promising directions for future research and 
development.

Key Challenges

Model Transparency and Explainability
AI models, especially those based on deep learning, often 
act as «black boxes,» producing decisions that are difficult 
for human operators to interpret or verify. In critical security 
contexts, a lack of explainability can lead to hesitation in 
trusting AI-driven alerts or automated actions. This challenge 
is compounded in multi-tenant environments, where 
transparency is essential for compliance and operational 
assurance.

Data Scarcity and Labeling Complexity
Training effective AI models for security relies heavily on large 
volumes of high-quality, labeled data. However, real-world 
NFV environments rarely produce sufficient labeled attack 
data, particularly for novel or zero-day threats. Additionally, 
labeling network traffic or configuration logs is a labor-
intensive process that often requires expert intervention, 
increasing costs and slowing development cycles.

Real-Time Processing Constraints
NFV environments are inherently dynamic and demand 
real-time threat detection and response. Many AI algorithms, 
especially those involving complex neural architectures, 
require substantial computational resources and introduce 
latency. Deploying such models without compromising 
service quality or violating service-level agreements (SLAs) 
remains a significant technical challenge.

Integration with Legacy Systems
While many service providers are moving toward cloud-
native and containerized NFV frameworks, a substantial 
portion of existing infrastructure remains based on legacy 
systems. Integrating AI-enabled security mechanisms with 
these older components, some of which lack telemetry 
support or standardized APIs—can create architectural 
inconsistencies and operational friction.

Adversarial AI and Model Poisoning
AI models themselves are becoming targets of attack. 
Techniques such as adversarial inputs and model poisoning 
allow malicious actors to deceive or corrupt AI-driven systems. 
In an NFV context, a compromised model could fail to detect 
threats, misclassify benign behavior, or initiate false responses, 
potentially undermining service integrity and trust.

Regulatory Compliance and Ethical Concerns
With the rise of AI in cybersecurity, ethical issues such as 
data privacy, algorithmic bias, and accountability have taken 
center stage. Many AI-driven security solutions require deep 
inspection of network packets, user behaviors, and metadata 
raising concerns under data protection regulations like GDPR 
and CCPA. Balancing effective defense with legal compliance 
remains an ongoing challenge.



AI-Optimized Network Function Virtualization Security in Cloud Infrastructure

International journal of humanities and information technology, Volume 7, Issue 3 (2025)10

Future Direction
Despite these challenges, the future of AI-driven NFV security 
is promising. Advancements across multiple domains are 
paving the way for more efficient, resilient, and intelligent 
security architectures.

Explainable AI (XAI) Integration
One of the most pressing research directions is the 
development of Explainable AI. Future models are expected 
to not only provide high accuracy but also offer human-
interpretable justifications for their decisions. Integrating 
XAI into NFV security systems can foster trust, improve 
human-machine collaboration, and enhance the auditability 
of security operations.

Federated and Privacy-Preserving Learning
To address data scarcity and privacy concerns, future NFV 
security systems may employ federated learning, a distributed 
approach where models are trained across decentralized data 
sources without sharing raw data. Combined with differential 
privacy and homomorphic encryption, this allows for 
collaborative model improvement while preserving tenant 
confidentiality and regulatory compliance.

Lightweight and Edge-Aware Models
As NFV expands toward edge computing and mobile 
environments (e.g., 5G and IoT), there is growing demand for 
lightweight AI models that can run efficiently in constrained 
devices. Research in model compression, pruning, and neural 
architecture search (NAS) is enabling the deployment of 
intelligent security agents even at the network edge.

Self-Adaptive and Continual Learning Systems
Future AI systems for NFV security will move toward continual 
learning, where models evolve incrementally without 
retraining from scratch. This is particularly useful in dynamic 
environments where new threats emerge regularly. Self-
adaptive models capable of learning from streaming data 
will improve resilience against evolving attack vectors and 
reduce operational maintenance overhead.

Cross-layer and Multi-Domain AI Coordination
NFV architectures are composed of various layers (application, 
virtualization, orchestration, physical), each with unique 
security considerations. Future implementations will likely 
leverage cross-layer AI coordination, where multiple AI 
agents collaborate across domains to form a unified threat 
intelligence and response fabric. This approach enhances 
situational awareness and enables more holistic security 
enforcement.

Standardization and Open Benchmarking
The absence of standardized metrics and evaluation 
frameworks remains a bottleneck for innovation. Future 
developments must include open benchmarking platforms, 

standardized datasets, and evaluation protocols that enable 
reproducibility and fair comparison of AI methods. This 
fosters transparency and accelerates industrial adoption.

Human-in-the-Loop (HITL) Architectures
Despite the push toward full automation, human expertise 
remains essential in decision-critical scenarios. Future systems 
are expected to include human-in-the-loop mechanisms, 
where AI suggestions are verified or contextualized by human 
analysts. This hybrid model improves both the accuracy and 
accountability of the security system.

Co n c lu s i o n
The Artificial Intelligence (AI) and Network Function 
Virtualization (NFV) merging in the cloud infrastructures 
introduces a revolutionary change in the network security 
realm. As digital systems have become more complex, 
large, and interconnected, especially in 5G, IoT, and multi-
cloud environments, traditional security mechanisms have 
progressively failed to deliver the agility, accuracy, and 
speed of response required to keep up with sophisticated 
and fast-evolving threats. At that, the concept of AI applied 
to NFV security systems can be discussed as more than 
an addition to improving the existing frameworks: it is 
a strategic need of contemporary cloud-native network 
architectures.

It has presented an insight into the underlying 
architecture of NFV, the fundamental security issues 
it presents, and, more importantly, how exactly AI 
technologies, including machine learning, deep learning, 
and reinforcement learning, can help address these threats. 
Intelligence embedded within multiple layers of the 
NFV ecosystem by AI helps improve anomaly detection, 
policy enforcement, and proactive and adaptive policy 
responses to cyber threats in real time. AI enables NFV 
systems to be not only reactive defenders but proactive, 
learning, adapting, and evolving security agents through 
clearly defined architectural elements and sophisticated 
orchestration processes.

Further, the evaluation metrics and practical case studies 
analysis supports the physical advantages of AI-integrated 
NFV security showing considerable improvements in 
detection rates, false positives decrease, and response time. 
Such gains do not only enhance resilience in the systems but 
also lead to better operational efficiency, less downtime, and 
better use of resources.

But this development comes with its own problems. 
Such concerns like AI explainability, data scarcity, integration 
complexity and adversarial threats have to be handled 
with care to achieve trust, reliability, and compliance in 
AI-driven security systems. The path forward will require 
both interdisciplinary research collaboration to address these 
challenges and sustained innovation in federated learning, 
edge-aware AI, explainable models, and standardization 
frameworks.
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