
Ab s t r ac t
AI is being applied  more and more in the construction industry to aid in decision-making, specifically material selection 
for buildings and optimizing roofing systems. In this paper, an innovative AI-based recommender applied in RoofNav  is 
proposed for smart roof decision-making by merging environmental data analytics and machine learning. The 
system integrates various data, such as FM Approved roofing  assemblies, climate data, and user behavior, to suggest 
personalized and context-sensitive recommendations. The proposed methodology uses a hybrid machine learning-based 
recommendation model which combines collaborative filtering and content-based filtering to enhance the accuracy 
and relevance of selected suitable  roofing material for various kinds of buildings in different locations. The RoofNav 
integration delivers a  user-friendly experience, so building professionals are able to quickly make informed decisions that 
are in compliance with local codes and performance requirements. This serves as an example for how AI in construction 
is proving to be a game-changer, encouraging sustainability, safety and cost-efficiency in the creation and  instillation of 
roofing systems. The ensemble model of combining ensemble learning, collaborative filtering via SVD, and a meta-learner 
delivered  the best results in Precision, Recall and MRR. It was 38% faster and more user-friendly than previous if-and-only-if 
systems, and 90+% of users  “enthusiastically” favored its design. This further illustrates how  it helps guide homeowners 
new and old through complicated roofing choices with confidence.
Keywords: Smart Roofing, AI Recommender System, RoofNav Integration, Building Materials and Method Selection, 
Machine Learning  in Building and Construction, Environmental  Data Analytics, Roof System Optimization
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In t r o d u c t i o n

The construction and  building envelope industry is in the 
midst of a profound shift toward digital technology, data 

science and artificial intelligence (AI). Of all the elements 
in a building, the roofing is the most integral; it’s the first 
layer of protection against  the weather while also being 
one of the most significant factors in providing insulation 
and reducing energy consumption [1]. With the  increase 
in legislation, changing building needs and increased focus 
on sustainability, selecting a roofing system has become a 
complex and interrelated series of decisions. Guiding the 
navigation of that universe of approved roofing assemblies 
and the code compliance of them are tools such as RoofNav 
from FM  Approvals, digital resources that have become 
instrumental. RoofNav offers a large amount of data 
but it is  not intelligent in a way to help users to choose 
between systems [2]. In this  paper, we present an AI-based 
recommender system built into RoofNav that aims to fill 
that gap.

As long used in the conventional design process, system 
selection generally is based on sifting through hundreds 
of approved assemblies manually, interpreting test reports 

and weighing cost against performance, environmental  or 
regulatory factors. It is a time-consuming process and one 
that, with human nature being what it is, may suffer from 
inaccuracies, especially in the hands  of less experienced 
designers, or even designers who may not be aware of all of 
FM Approvals’ various certification nuances [3]. Moreover, 
given that buildings become  increasingly specialized and 
that climate has a great influence on building performance, 
the requirement for context-aware recommendations 
becomes more crucial. An appealing solution to this  is 
AI. By harnessing historical data, environmental factors, 
performance indicators, and user input, AI provides 
actionable, data-backed recommendations served up to 
improve the timeliness and accuracy of  roofing decisions [4].

RoofNav, an always-free tool integral to reaching 
stakeholders in the commercial construction industry — 
such as architects, engineers, contractors, building owners, 
and  specifiers — by making FM Approved roofing products 
and assemblies accessible to meet various building codes 
and insurance needs. But the  system is essentially still 
static; users are tasked with actively hunting for and sifting 
through information in search of the right product or solution, 
often not even knowing how to measure one set of criteria 
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against another—whether that be wind uplift resistance 
versus thermal performance or fire ratings. With ever more 
complex requirements in building construction, which 
include  goals for sustainability or legal specifications for 
energy efficiency as well as regional climate and life cycle 
costs; and the requirement for more dynamic and cognitive 
assisted planning help one will continue to rely on [5].

A type of AI technology often used in e-commerce, 
entertainment and online retail, recommender systems 
have been successful in helping users find desirable choices 
from among a vast number of options. In recent years, these 
methods have found promising applications in domains 
such  as healthcare, education and industrial design, where 
complex decisions must be made under uncertainty. 
However, the construction and building systems industry 
has been relatively slow in adopting such  technologies, 
particularly in heavily-regulated markets ( e.g., roofing) where 
compliance and performance are of outsized importance 
[6]. This study suggests the use of recommender system 
techniques — particularly a hybrid approach (content-based 
filtering, collaborative filtering, and supervised learning) 
adapted  specifically for the selection of roof assemblies 
using the RoofNav.

The reasons why a smart roofing recommender system 
is developed are two: (i) there is a gap in the construction 
robotics where roofing labor force has not yet been 
reconsidered towards mechanization and worker-side 
automation; and (ii) it offers various benefits for workers, for 
business  and for clients too. The first goal is to optimize the 
selection process, by making users make only an informed 
decision, thus reducing the cognitive demands on users 
and  making their decision faster. The second  is to improve 
the quality and the predictability of these decisions, by giving 
us the advice and the data based on recommendations 
of data, past picks, climate and performance. It not only 
enhances a good experience  for the user but it leads to 
better performance of the project regarding compliance, 
cost, and its long-standing life [7] [8].

The implementation of AI in RoofNav is a game  changer: 
Static lookup tools make way for intelligent, context-aware 
advisory systems. The presented recommender system 
is implemented as a plug-in to the RoofNav interface 
where a default recommendation is made according  to 
the users current project profile [9]. For instance, if a user 
provides information like building location, occupancy, 
desired thermal performance, and deck construction, the AI 
engine takes  those inputs and combines it with historical 
information and environmental context to return a ranked 
list of compatible assemblies. These recommendations 
are not random; they are based on complex machine 
learning algorithms that have been specifically trained on 
vast quantities of data, including the test results from FM 
Approvals, historical selection logs,  regional climate profiles, 
and changing code requirements [10].

A few technical challenges were to be overcome to 
develop the  recommender system. One of the main hurdles 

was integration of the data—aggregating different data 
sources that have different structure,  granularity and quality. 
For roofing data, specifically, we have a wide range  of sources 
such as certification reports, performance evaluations, 
product specifications, and logs of the user interaction. 
The normalization and generation of features from this 
heterogeneous  data required significant preprocessing 
pipelines and domain knowledge. Model  choice also 
presented a difficulty to economists [11]. Due to the 
complexity of the roofing selection task,  no single algorithm 
was appropriate. The Hybrid model approach was chosen 
due to constraints of time and feedback, meaning that 
explanations of content-based filters had to be combined 
with behavioral  insights of collaborative filters while still 
leveraging the prediction power of ensemble methods such 
as gradient boosted trees and neural networks. The ensemble 
model was trained and cross-validated for  generalization 
and robustness [12].

Preliminary pilot integrations  of the recommender 
system in RoofNav has demonstrated positive effectiveness. 
The speed of decision making was significantly faster, 
and  the feedback showed more confidence in the suggested 
assemblies. In  addition, the system achieved good results 
in multiple metrics including precision, recall, and user 
satisfaction scores. These findings confirm the viability and 
benefit of AI-amplified tools in technical decision-making 
settings such as  roof design [13].

In addition to  its direct application in choosing a 
roofing system, this work also presents relevance in the 
construction domain. With buildings getting smarter  and 
more connected, coupled with a growing desire for analytics-
driven decisions, AI-enabled tools will be essential to the 
industry’s digital transformation [14] [15]. The workflow 
described in this paper could also be generalized to other 
domains (e.g.  walls assemblies, HVAC systems, fire protection 
planning etc); thus culminate in a network of smart assistants 
for design – seamlessly integrated with the regulatory 
platform and building information modeling (BIM) systems.

In conclusion, we have designed, developed, and 
deployed a smart AI-driven recommender system on  our 
RoofNav platform. It describes the architecture, data pipeline, 
model training, and model testing and analysis of the system, 
and illustrative examples show how AI can be used to support 
the decision-making in the  choice of a roofing system. By 
evolving RoofNav to become more a predictive decision-
making tool for the user, this development is not just a better 
way of using the site  – it also syncs with wider trends in smart 
construction, digital compliance and sustainable building.

Related Work
Several projects have been conducted  to utilize AI in 
construction and material selection. Recommender 
systems are extensively used in domains like e-commerce 
and streaming services but not as  much in the field of 
construction decision making tools. In building design, 
existing work has explored the exploitation of optimization 
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algorithms in the determination of material and component 
selection, but little research has been done so for an 
integration with platforms  like RoofNav, neither roofing 
recommendation systems has been studied in particular.

Himeur et al. present a complete overview of recommender 
systems in the context  of improving energy efficiency for 
buildings. They classify current systems according to criteria 
of objectives, computing  platforms, and evaluation metrics. 
This study highlights the significance of AI and IoT technology 
as the  key to integrating diversified forms of data to enhance 
system performance discussing the capability of the systems 
to foster energy-conservation behaviours and decrease 
carbon emissions [16].

Law and Miur propose RoofNet, an international 
multimodal dataset for the purpose of roof material 
categorisation. Through the fusion  of fine spatial resolution 
Earth Observation imagery and curated text annotations, 
RoofNet improves the resolution of global exposure datasets. 
The data set facilitates  scalable AI-powered risk assessment, 
providing actionable insights for infrastructure policy 
planning and disaster mitigation [17].

Afsar et al. for a recent overview of using  reinforcement 
learning (RL) for recommenders. They  talk about how RL, 
and especially deep reinforcement learning, enables dynamic 
user-system interaction and long-term user retention. The 
paper discusses  a framework including state representation, 
policy optimization, reward design and environment 
construction, the framework’s effectiveness further suggests 
the possibility of RL-based recommender system design [18].

Zheng et al. study the incorporation of AutoML into 
deep recommender systems. They suggest a taxonomy 
for AutoML  in this setting, including feature selection, 
embedding dimension search, and model architecture 
search. The work highlights the possibility of AutoML 
methods to diminish dependency on human expertise in 
creating  deep recommender systems [19].

Notes Trend of Building Utility Energy Scores The 
SmartBuild RecSys refers  to a SmartBuild project which 
suggests a SRI-based recommendation system for reducing 
building energy consumption. By pulling from BIM data and 
the Passive House database, system recommendations are 
flexible and buildings have details for thermal  envelope 
elements such as walls, roofs, and windows. The  content-
based recommender system helps designers reduce energy 
use and maintain THW stability.

In a research article in Complex & Intelligent Systems, 
authors  describe CF methods for recommendation systems. It 
distinguishes memorybased and modelbased  CF,underlines 
the pros and cons of both. The study highlights the necessity 
of incorporating side information like location, tags, etc. in 
order to improve CF based systems. 

Xu et al. introduce a model for contractor recommendation, 
which integrates credit networking and collaborative 
filtering. Contractor’s credit worth and past performance of 
the contractor are evaluated by the model and a systematic 
method  for contractors’ selection in construction jobs is 

being presented. This approach can be applied to advise 
about the roofing, by analyzing the reliability and  the quality 
of products from the suppliers [20].

Rafiei  and Adeli establish a performance-based 
contractor recommendation system based on a weighted 
activity–contractor network. It takes  many measures of 
performance into account to recommend contractor(s) who 
should perform specific activities. Such a methodology may 
be useful for prescribing roofing systems, for comparison of 
performance  of various roofing assemblies under various 
conditions [21].

System Architecture
The architecture of the suggested smart roof recommender 
is intended  to be modular, scalable, and delivered in real-
time. It is shown in figure 1. By combining information from 
various sources and  leveraging advanced machine learning 
models, it makes intelligent recommendations for users 
directly within the RoofNav user interface. The architecture 
consists of  three major parts:

Data Integration Layer
This base  layer is responsible for the integration, 

cleaning, transformation, and standardization of a wide 
range of data sets. It’s job is to consolidate structured and 
semi-structured) data from different trusted sources into a 
format that  is convenient for machine learning and real-time 
querying.Key responsibilities include:

•	 Data Compilation
Collects information  from multiple sources, including FM 
Approvals, NOAA, ASHRAE, building code databases, and 
usage logs from RoofNav.

Figure 1: System Architecture for AI-Based Recommender 
System Integrated into RoofNav
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•	 Data Standardization
Unifies data formats across various  schemas (such as 
associating code compliance metadata with roofing system 
characteristics).

•	 Real-Time Sync
Customizes APIs or ETL jobs to facilitate real-time syncing 
with data, especially  when the data is sourced from dynamic 
destinations (eg, weather conditions or regulatory code 
updates).

•	 Security and Anonymization
Protects the privacy of users by anonymizing  behavioral logs 
and complying with privacy regulations such as GDPR or CCPA.

Machine Learning Engine
This  central computational element analyses the combined 
data to provide tailored recommendations taking into 
account the settings. The engine is comprised of:

1. 	Hybrid Recommender Models

•	 Collaborative Filtering
Utilizes aggregate  user behavior (e.g., choices, search history, 
page views, feedback) to map the users to similar users and 
recommend systems on the basis of collective preferences [22].

•	 Content Based Filtering
Recommends systems with similar  i tem -specif ic 
metadata  (such as roof material, fire resistance, wind uplift 
rating) profile with the project a user is currently working [23].

2.	 Advanced Classifiers

•	 Gradient Boosting Machines (GBMs)
to classification and ranking tasks, use when features are 
numeric or categorical and when input data is not too big (will 
not handle big data) and not  too many missing values [24].

•	 Neural networks
made up of  mult i layer  perceptrons (MLPs),  and 
potentially  convolutional neural networks (applicable 
to image analysis on roof-layouts) are used to model the 
complex relationship between environmental factors and 
system performance [25].

•	 Ensemblability
Stacking or voting over a set of models  through ensembling, 
which can increase the robustness and generalization of 
recommendation [26].

3.	 Feedback-loop and learning  pipeline

•	 Implicit feedback
Learning from  user interactions including time spent on 
a recommendation, acceptance/rejection rates, and user 
service model modification.

•	 Explicit Feedback
The user has the  option of rating or giving some text for 
feedback, thereby refining the recommendation engine.

•	 Model Retraining
Periodic retraining on new datasets to prevent concept 
drift  and keep recommendations in sync with emerging 
codes, products, and user behavior.

User Interface Integration
This layer is the front-end for the user interaction, and it is 
integrated with the RoofNav  platform without perceivable 
integration barriers.Key features include:

Dynamic Recommendations
•	 Contextual design feedback updates on-the-fly as  users 

enter project information – including roof type, location, 
type of deck and performance considerations.

•	 Visual representations (e.g., confidence scores, compliance 
badges) allow users to see why certain systems  are 
recommended.

Search Optimization
•	 Suggestions and semantic filters  help to refine searches 

based on learnt synonyms, popular filters and location-
sensitive constraints.

Explainability &  Transparency
•	 System  offers justifications (e.g., through tooltips or 

pop-ups) for every recommendation explaining the 
reasons of the recommendation through justifications 
(e.g., “Recommended because of better performance 
in high-wind area”).

Accessibility  & Responsiveness
•	 The interface is responsive for multiplatform support 

(desktop, tablet) and developed in  accordance with the 
accessibility standards (WCAG 2.1).

Data Sources
A recommender system relies on data and a high quality 
dataset to provide  accurate results to the user [27-31]. Here’s 
a summary  of the key data sources and what they do:

The FM Approved Roofing System Database is the heart of 
the recommender system, being the real database of roofing 
assemblies which have successfully passed the stringent  FM 
Approvals standards. This file contains all this information, 
organized piece by piece for each system, from the insulation 
to the adhesive and  fastener, and of course the membrane. 
It also designates material properties, deck  types (i.e., steel, 
concrete, wood), and the various membrane choices (like TPO, 
PVC, EPDM) in various assemblies. Moreover, the database 
includes endorsement ratings that serve as indicators of a 
system’s performance for certain characteristics,  e.g. fire 
resistance, hail damage, and wind uplift. These are vital to 
making sure that the suggestions are based on certified, 
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field-proven  solutions, designed to satisfy structure and 
environment requirements.

Wind resistance performance data is crucial for evaluating 
the structural integrity and protection for roofing systems 
in areas known for strong  winds, hurricanes or storm 
events. These findings are brought about through approved 
testing procedures, most notably FM 4470 and FM 4471, 
based on extreme winds that examine how a roof assembly 
withstands  disbonding and mechanical shock. The test 
results are an important part of the recommendation system 
and are particularly used as principles when they make 
recommendations for buildings in  hurricane-sensitive and 
coastal areas. Wind uplift resistance ratings play an important 
role as a ‘base filter and sort’ parameter in the selection/
ranking process, and help rank systems that are known 
to  weather severe storms. The use of these reference models, 
cross-referencing to acceptable safety standards and regional 
building codes, guarantees user selections conform  to the 
required safety markers.

Geographical-information system and environmental data 
are important resources  to contextualize the development of 
roof technology on a regional basis. This information comes 
from trustful organizations such as the National Oceanic 
and Atmospheric Administration (NOAA), American Society 
of Heating, Refrigerating  and Air-Conditioning Engineers 
(ASHRAE), Federal Emergency Management Agency 
(FEMA), and local meteorological services. Contributing 
environmental factors are ambient temperatures, humidity, 
ultraviolet (UV)  radiation, and the frequency of freeze and 
thaw cycles that affect the performance of the materials and 
life of the system. In addition to this, hurricane zone data, 
such as wind-speed maps,  storm occurrence, and flood 
hazard assessments, are also available for assessing localized 
hazard exposure. Such data  sets are dynamically linked to 
geolocation of each project with in order to pre-screen or 
enhance the ranking of roof systems that are engineered 
and tested to be suitable for the prevalent environmental 
conditions in both performance and longevity.

User behavior logs play important role in modeling 
real-life behaviors and preferences in  the RoofNav system. 
Log files Log files  record information such as search terms, 
filters used, systems visits/downloads selected for a project 
opened and anonymized usage statistics. Through time, this 
behavioral information serves to identify thematic patterns of 
user choices which indirectly become evident for preferences 
for particular project types, local  contexts or building 
obligations. Crucially, all data from users is anonymous and 
aggregated in accordance with GDPR and CCPA data privacy 
laws, providing personal privacy and helping the system 
learn from past  usage. This behavioral intelligence is a critical 
component in one or more of the aspects of collaborative 
filtering implemented by the recommender engine, and in 
turn allows the recommender engine to suggest systems 
preferred by similar users under  similar situations, improving 
the relevancy and personalization of the results.

Part of the recommendation process is to verify 
that roofs satisfy legal and safety requirements by  the 
inclusion of a code compliance metadata. The metadata is 
gathered  from authoritative sources such as the IBC, state 
and local code databases, and FM’s internal interpretations 
of the codes. Critical building ordinances are  all part of the 
data set – minimum design load requirements, thermal 
resistance budgets, fire resistance ratings and wind uplift 
design requirements. For adoption end-user, that metadata 
serves as a rule-based boundary condition during the 
process of  recommending roofing systems to them, to 
guarantee that the recommended roofing system is not only 
‘matching’ user requirements, but it is also in compliance with 
jurisdictional requirements. If the user is choosing an option 
that exceeds allowable limits, the system can provide alerts or 
suggest other options that remain within the limits, thereby 
reducing risk and ensuring code-compliant  decision making.

Recommender System Design

Feature Engineering
Useful recommender systems start  from careful and domain-
specific feature engineering. In terms of wise roofing choices, 
those are design elements that are thoughtfully considered 
to serve the technical and  contextual fact of how that 
roofing system is to be used. Included are features such 
as type and occupancy of the buildings which are used to 
determine such factors as the load requirements  for the 
building design as well as fire protection requirements for 
residential, commercial, industrial and institutional buildings. 
It heavily depends on where you live– recommendations 
change based on wind  zones, humidity, and UV exposure. 
The desired level of insulation  R-value is a second important 
factor because thermal performance (whether for the attic, 
cathedral ceiling or other roof type) is required based on 
energy efficiency objectives and climate locations. Roof 
slope as well as a deck type are also significant physical 
parameters  of compatibility for going into various roofing 
assemblies. Budget priors are formulated to constrain how 
the recommendations can be  financed based on what they 
cost, thus produced suggestions are economically sensible. 
In summation, historical performance ratings (from real-world 
runs and lab test results) provide outcome-based filtering, 
which increases the probability of frequent winners to be 
recommended in cases  similar to what was tested.

Model Selection
The final system, after exploring a number of machine 
learning models such as decision trees, deep learning 
libraries, and  standard collaborative filtering models, 
was a hybrid architecture that allows the structured 
components in data to be preserved along with the user 
touchpoints in order to have the best fit. The proposed model 
leverages on the merits of Ensemble Learning to compute 
structured and contextual data, and collaborative  filtering 
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through matrix factorization by applying Singular Value 
Decomposition (SVD) to unearth underlying relationships 
from user behavior data. Ensemble Learning is robust to 
mixed categorical and  numerical data and shows strong 
performance in the presence of many interacting features 
with missing values. SVD-based collaborative filtering, in 
contrast, reveals latent similarities between users as well 
as between  roofing systems based on joint historical 
interactions and preferences. Outputs of these two models 
are  then combined by a meta-learner. It is this ensembling of 
the two techniques: contextual scoring  (Ensemble Learning), 
and behavioral matching (SVD), that gives us the final optimal 
ranked list of recommendations. This architecture  generates 
well-balanced, accurate, and explicable results, which can be 
easily adapted to new users and datasets.

Model Training
The hybrid recommendation system was  trained on a dataset 
with over 50k past queries and approval interactions extracted 
from RoofNav extensive usage logs and performance data. 
To enable training on large datasets, an 80/20 train-test 
split was used whilst  maintaining the original distribution 
of building types, geographical zones, and user behaviors. 
Cross-validation methods  were also applied to alleviate 
overfitting and to examine generalizability to different 
types of users and potential scenarios of use. Preprocessing 
steps entailed one-hot encoding for categorical (deck type) 
features,  standardization for numerical inputs (R values), and 
temporal trend (for changing the preferences at different 
periods). The training pipeline was designed to be scalable, 
as we can retrain in the  future due to more user data and 
roofing system approvals. This from the fact that the model 
is current and up-to-date with the most current standards, 
products and  user behaviors!

Eva luat i o n a n d Re s u lts

Metrics
We used quantitative as well as qualitative metrics to establish 
the effectiveness  of the AI- based recommender system. 
Precision and Recall were used to assess the accuracy of 
the top five recommendations, i.e., the number of relevant 
systems recommended (precision) and the number 
of  relevant systems that were indeed recommended 
(recall). To test whether the system is capable of assigning 
the highest score to most relevant  roofing system among 
the recommendations, the Mean Reciprocal Rank (MRR) was 
considered. In addition to the algorithmic based metrics, 
user satisfaction surveys were performed in order to give 
a  view of how practical, usable and reliable the proposed 
recommendations are at end-user level. A critical operational 
indicator was time-to-decision for installation of the roof 
system before and after introducing the AI recommender, 
measuring time spent in decision process on  which roofing 
system to purchase.

Re s u lts
There were similar enhancements in terms of operational 
efficiency era - on average was shortened by 38% -  which 
production-wide value creation also led to the decision time 
to be turned around significantly faster by means of context-
sensitive recommendations. And, qualitative feedback was 
overwhelmingly  great. 92% of test users expressed more 
confidence in their choice – noticing the  system’s relevance, 
usability, and informative explanatory elements as the most 
valued properties. These findings support the potential  of 
the system to evolve RoofNav into a proactive intelligent 
decision support tool for roofers.

The results are presented in table, figure 2, figure 3 and 
figure 4. The Light Gradient Boosting Machine (LightGBM) 
model achieved strong  numbers in providing relevant 
roofing suggestions given structured input feature 
information such as building category, location, insulation, 
budget. With a Precision of 78.5%, the model robustly 
ranked suitable roofing systems in one of the top five 
suggestions, which makes it an efficient initial filter based 
on the explicitly given  information. But the Recall of 71.4% 
indicated that some of the relevant systems may have been 

Table 1: Result Analysis of Different Classifiers for 
Recommender System Integrated into RoofNav

Model Precision@5 Recall@5 MRR

LightGBM 78.5% 71.4% 0.58

Neural Network 80.2% 72.9% 0.61

Ensemble 
Learning(LightGBM 
+ SVD + Meta-
Learner)

84.3% 77.2% 0.63

Figure 2: Precision comparison of Different Classifiers for 
Recommender System Integrated into RoofNav
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missed, especially in those cases where user preferences are 
influenced by criteria other than those that can be encoded 
in structured  data. That is, although LightGBM is very good 
at identifying clear-cut, rule-based compatibility, it does 
not “see” the complicated relationships between users or 
the nuances  in behavior. The MRR score of 0.58  indicates 
moderate success in positioning the most appropriate 
candidates at the top of the ranking. Normally, the optimal 
answer will be  among the first one or two returned. Generally 
speaking, LightGBM works well in cases with sufficient explicit 
features, but is restricted when we  have to customize deeper.

The neural network model outperformed the LightGBM 
baseline by capturing more complicated  nonlinear 
relationships among the input features. With a higher 
5th confidence threshold (Precision@5: 80.2%), it even 
provided slightly better top-tier recommendations due to 
better understanding of overt complications inherent in 
the patterns such as relationships between climate zones, 

deck types, and historical performance  scores. Additionally, 
the model obtained a Recall@5 of 72.9% showing that it is 
superior in retrieving wider variation of  relevant systems, 
possibly because it is able to generalize across diverse input. 
The MRR score of 0.61 further validates this, since  the neural 
model on average ranked a better roofing system upper in the 
recommendation list when compared to the LightGBM. This 
enhanced ranking relevance of neural networks is particularly 
influential for problems with more varied or more subtle 
reasons to make  a decision. Yet the gains, rather moderate, 
were more cumulative than disruptive, and  showed that 
neural networks, while powerful, can be improved with the 
judicious use of policy as a drive in recommender tasks.

The ensemble learning model, which combines 
LightGBM for structured feature processing, Singular Value 
Decomposition (SVD)  for collaborative filtering, as well 
as meta-learner to pool their outputs, achieved the best 
in performance under all evaluation metrics. At 84.3% 
for Precision@5, the hybrid system provided the most 
accurate and context aware  recommendations, ensuring 
that more than four of the top five suggestions closely fit 
the requirements of a user’s new project. Coupled model’s 
Recall@5, which was 77.2%, also served to  demonstrate 
its ability to retrieve a diverse range of relevant systems 
based on both explicit and implicit preference. The MRR of 
0.63 indicated that the closest was often among the  1-2-th 
options, contributing to decision making and increasing the 
value of the option ranking. This high quality ranking output 
boosts user confidence and accelerates the selection process 
by reducing  time spent sifting manually through irrelevant 
results. By combining the power of both context-aware 
and behavioral recommendation  methods, the ensemble 
model offered a comprehensive, adaptive, and efficient 
recommendation approach well-suited to the wide and 
specialized practices of the roofing business.

The performance of our Ensemble Learning model 
dominates the solo LightGBM and  Neural Network models 
on all important evaluation metrics. It  validates a hybrid 
architecture for recommending roofing system in RoofNav: 
employing domain knowledge (such as given by LightGBM) 
and user behavior patterns (such as learnt by CF) achieves 
the best performance.

Co n c lu s i o n a n d Fu t u r e Wo r k
The integration of an AI-powered recommender  within 
RoofNav is a major step forward for the roofing industry as 
it begins to shift toward an intelligent, data-driven decision-
making approach. This study showed how state of the art 
machine learning methods – namely LightGBM, neural 
networks and ensembles – can be  utilized to improve the 
decision-making process concerning the choice of a roofing 
system, by suggesting personalized, compliant, and context-
based recommendations. Utilizing a large and  varied 
dataset including FM Approved roofing systems, wind uplift 
resistance test results, environmental conditions, and user 

Figure 3: Recall comparison of Different Classifiers for 
Recommender System Integrated into RoofNav

Figure 4: MRR comparison of Different Classifiers for 
Recommender System Integrated into RoofNav
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behavior logs, our system now offers practical answers that 
comply with structural, environmental, code, and budgetary 
needs.

Of the models compared the hybrid combination of 
Ensemble  and SVD together with a meta-learner performed 
the best for all major metrics –- Precision@5, Recall@5 and 
Mean Reciprocal Rank (MRR). Not only was this model 
the most accurate, it was also the most human-centered, 
impacting decision time by 38% with over 90% of test 
users rating it  favorably. These findings highlight the 
system’s  capacity to enable both novice and expert users 
to negotiate a complex territory of roofing assemblies with 
security and economy.

Finally, the Smart Roofing Recommender extends 
RoofNav by turning it into an intelligent decision support 
system away from a static  lookup tool. It provides architects, 
contractors, engineers, and code officials with up-to-date, 
virtual reality like first-person experience that  enables them 
to take a step forward in protecting their buildings. Potential 
beyond this research could be found on more detailed 
personalisation, automatic live updates of the environment 
over time,  integration with BIM (Building Information 
Modelling) systems. In the increasingly digital construction 
world to come, smart systems such as this will play a key role 
in driving  sustainability, safety and efficiency at scale.
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