
Ab s t r ac t
Software supply chain attacks have escalated with the proliferation of open-source dependencies and automated
deployment tools. This paper investigates vulnerabilities in Continuous Integration/Continuous Deployment (CI/CD)
pipelines and proposes practical defense mechanisms to secure the build and release lifecycle. Using Jenkins and GitHub
Actions as case studies, we assess risks such as credential leakage, dependency poisoning, artifact tampering, and
container trust violations. A scan of 1,500 public CI/CD configurations reveals that 62% lack integrity checks or secure secret
handling practices. We simulate attacks where poisoned dependencies are injected via typo-squatting and malicious pull
requests, demonstrating successful lateral movement into protected networks. To mitigate these threats, we propose a
defence-in-depth strategy using Software Bill of Materials (SBOMs), cryptographic signature enforcement (e.g., Sigstore),
container image attestation, and policy-as-code frameworks like OPA and Conftest. A prototype pipeline is built using
Tekton and secured with admission controllers and signed commits. Our testing shows a 93% detection rate of tampered
components and full traceability of build artifacts. We also evaluate organizational readiness, highlighting the need for
developer security awareness and tighter access control. This paper presents a practical framework for securing CI/CD
pipelines against modern software supply chain threats, aligning with SLSA and NIST SSDF guidelines.
Keywords: Supply Chain Attack Surface, Pipelines, OPA and Conftest.
International journal of humanities and information technology (2025)	 DOI: 10.21590/ijhit.07.02.03

Supply Chain Attack Surface in CI/CD Pipelines: Risks
and Defences
Anna Kowalska
Cybersecurity Analyst, Warsaw University of Technology, Poland.

International journal of humanities and information technology

ISSN - 2456-1142
International journal of humanities and information technology	 Volume 7, Issue 2, 2025

In t r o d u c t i o n
The integrity of the software supply chain has emerged as
a critical concern as attackers increasingly target the tools
and processes used to build, test, and deploy code. With
the ubiquity of Continuous Integration and Continuous
Deployment (CI/CD) pipelines in modern development, even
minor misconfigurations can enable sophisticated attackers
to compromise source code, insert backdoors, or exfiltrate
secrets.

High-profile incidents such as the SolarWinds and Codecov
breaches have illustrated how build-time manipulations
can remain undetected until after deployment, leading to
widespread compromise. The shift-left philosophy, while
empowering developers with autonomy, also brings the
responsibility of securing the entire software delivery
pipeline.

This paper investigates common vulnerabilities in CI/CD
environments, including insecure dependency sourcing,
secrets exposure, and unverified build artifacts. By analyzing
real-world configurations from open-source repositories
and simulating practical attacks, we quantify the attack
surface and demonstrate how adversaries can pivot from
CI tools into trusted production environments. Our goal is
to present an actionable framework that integrates security
controls without compromising agility, using open standards

and modern tools such as SBOMs, signed attestations, and
policy-as-code.

Re l at e d Wo r k
Previous research has explored individual components of
software supply chain security. Gkortzis et al. (2021) examined
the security posture of GitHub Actions workflows, revealing
widespread neglect of permission scoping and secret
management. Other studies have focused on container image
trust (Shen et al., 2020), showing how unverified third-party
images serve as Trojan horses for malware delivery.

Google’s SLSA (Supply-chain Levels for Software Artifacts)
framework and NIST’s Secure Software Development
Framework (SSDF) propose high-level guidelines for artifact
integrity and provenance. However, implementation
guidance is fragmented across platforms and tools, leading
to inconsistent adoption.

Few studies address the integration of all key CI/CD
components—source code, secrets, dependencies, build
runners, and artifact storage—into a unified trust model. This
paper aims to bridge that gap by evaluating both security risks
and defense strategies in a practical, DevSecOps-compatible
context. By including both GitHub Actions and Jenkins—two
of the most widely used CI tools—we ensure our findings
apply broadly across enterprise and open-source workflows.

Supply Chain Attack Surface in CI/CD Pipelines: Risks and Defences

International journal of humanities and information technology, Volume 7, Issue 2 (2025)18

Me t h o d o lo g y
Our approach consists of empirical analysis, attack simulation,
and defense validation:

Configuration Analysis
•	 Scraped and analyzed 1,500 public CI/CD configuration

files from GitHub repositories using GitHub Actions and
Jenkinsfiles.

•	 Parsed YAML and Groovy scripts to identify insecure
patterns: unencrypted secrets, unsigned scripts, and use
of unpinned dependencies or images.

Attack Simulation
•	 Injected poisoned dependencies using typo-squatting

in npm and PyPI.
•	 Demonstrated malicious pull request campaigns

targeting misconfigured workflows with auto-merge
privileges.

•	 Simulated lateral movement from CI runners into internal
networks via misconfigured credentials.

Defense Implementation
Built a hardened CI/CD pipeline using:
•	 Tekton Pipelines with admission controllers
•	 Sigstore for code signing and verification
•	 OPA + Conftest for policy validation
•	 SBOMs generated using Syft and verified during the

build

Evaluation Metrics
•	 Detection rate of tampered components
•	 Time to trace a malicious artifact to its source
•	 False positive rate in policy enforcement
•	 Developer usability and pipeline overhead

Ex p e r im e n ta l Se t u p a n d
Eva luat i o n Cr i t e r ia
Our testing environment was designed to simulate realistic
CI/CD use cases and supply chain attack vectors:

Infrastructure
•	 CI/CD runners deployed in isolated Docker and Kubernetes

environments
•	 GitHub repositories forked and populated with vulnerable

configurations for controlled testing
•	 Artifact registry with version control and audit trail

Pipeline Components
•	 Jenkins v2.401 LTS and GitHub Actions runners configured

for Node.js and Python projects
•	 Hardened pipeline using Tekton v0.46.0 with GCP Artifact

Registry
•	 Custom OPA policies enforced at build and deploy

stages

Metrics Collected

Detection Accuracy
Percent of modified dependencies, unsigned commits, or
policy violations identified

Traceability
Time required to reconstruct artifact lineage post-compromise

Operational Overhead
CPU, memory, and build time comparisons with and without
security mechanisms

Developer Compliance
% of rejected builds due to policy violations and manual
overrides

This setup enabled end-to-end evaluation of CI/CD
pipeline exposure and the effectiveness of layered security
defenses.

Re s u lts a n d At tac k Sim u l at i o n
Ou tco m e s
Our simulated attacks on public and controlled CI/CD
pipelines exposed several prevalent vulnerabilities:

Configuration Analysis

Unencrypted Secrets
41% of analyzed GitHub Actions workflows used plaintext
tokens or credentials in environment variables.

Unpinned Dependencies
66% referenced latest tags or version ranges, leaving
pipelines susceptible to upstream changes.

Missing Validation
62% lacked integrity checks like checksums, SBOM validation,
or GPG signatures.

Attack Impact

Poisoned Dependencies
Typo-squatted libraries (requestsx, expresss) were silently
accepted in 7/10 simulated pipelines.

Malicious PRs
Auto-merge rules without reviewer gates enabled arbitrary
code injection in 18% of tested repos.

Credential Abuse
Environment leaks allowed simulated attackers to access
internal Git, Docker registries, and cloud APIs.

Lateral movement was successful in Jenkins environments
where runners shared network scopes with production
services.

Supply Chain Attack Surface in CI/CD Pipelines: Risks and Defences

International journal of humanities and information technology, Volume 7, Issue 2 (2025) 19

Defense Evaluation
We implemented a secure pipeline using Tekton, Sigstore,
and policy-as-code to prevent, detect, and respond to these
threats.

While false positives occurred in early stages, tuning
policies reduced disruptions without relaxing security
constraints.

Logging, Traceability, and Build Forensics
Audit logs were captured from Jenkins, GitHub, Tekton, and
artifact registries. Key findings:
•	 Tekton + GCP Artifact Registry enabled end-to-end

traceability via unique build digests and SBOM hashes.
•	 Sigstore (Rekor log) offered verifiable transparency for

signature validation events.
•	 GitHub Actions lacked native SBOM and signed-commit

enforcement, relying heavily on community plugins and
workflows.

Build forensics showed that secure pipeline elements
added <7% latency and <5% memory overhead per job,
making adoption viable for most enterprise workloads.

Or g a n i z at i o n a l Ch a l l e n g e s a n d
De v e lo p e r Re a d i n e s s
A survey conducted with 40 developers and DevOps
engineers revealed:

•	 Only 22% had formal training on CI/CD security practices.
•	 70% found existing tools fragmented or overly complex.
•	 65% expressed concern over pipeline failures due to

overly strict policies.
We recommend incorporating security training into

onboarding and adopting CI/CD platform templates with
pre-approved security defaults. Policy-as-code (e.g., OPA)
improves collaboration by codifying rules transparently,
allowing versioning, testing, and gradual rollout.

Re co mm e n dat i o n s f o r Se c u r e CI/
CD Ad o p t i o n
Based on our results, we recommend a layered strategy:
1.	 Inventory and Pin Dependencies Avoid latest tags and

require cryptographic hashes.
2.	 SBOMs and Artifact Signing Integrate SBOM generation in

every pipeline step, and enforce signatures via Sigstore
or in-toto.

3.	 Policy-as-Code and Admission Control Use OPA or
Conftest to enforce secure practices at build, test, and
deploy stages.

4.	 Secrets Management Store credentials in managed vaults
(e.g., HashiCorp Vault, GitHub Secrets), not inline config.

5.	 Audit and Log Aggregation Centralize logs and use tamper-
proof registries (e.g., Rekor) for signature visibility.

Figure 1: CI/CD Pipeline Trust Zones and Artifact Flow

Table 1: Defense Evaluation

Defense Mechanism Detection Rate Notes

SBOM Verification (Syft) 91% Failed when components were renamed at build time

Sigstore Verification 100% Caught all unsigned or tampered artifacts

OPA/Conftest Policy Checks 93% Detected malformed builds and environment misuse

Admission Controllers 95% Blocked unauthorized pipeline runs

Supply Chain Attack Surface in CI/CD Pipelines: Risks and Defences

International journal of humanities and information technology, Volume 7, Issue 2 (2025)20

6.	 Education and Shift-Left Enforcement Provide policy
templates and secure boilerplates to reduce friction for
development teams.

Co n c lu s i o n
CI/CD pipelines represent a critical attack surface in modern
software supply chains. As automation scales, so too does
the blast radius of a misconfiguration or compromised
dependency. Our research confirms that while tools like
Jenkins and GitHub Actions are powerful, they are often
deployed insecurely, creating opportunities for credential
leakage, code tampering, and malicious injection.

By evaluating real-world configurations and simulating
sophisticated attacks, we reveal systemic weaknesses but
also practical defenses. Tools like SBOMs, Sigstore, Tekton,
and policy-as-code offer measurable gains in visibility and
control, enabling organizations to lock down their software
delivery chains.

To secure CI/CD pipelines, security must be treated as
code—embedded, versioned, and validated as rigorously
as the applications they deliver. Our framework aligns with
emerging industry standards and provides a roadmap for
adopting trustworthy build automation across teams and
clouds.

Re f e r e n c e s
[1]	 Gkortzis, A., & Spinellis, D. (2021). Software engineering

practices in GitHub Actions. Empirical Software Engineering,
26(3), 1–38.

[2]	 Shen, J., Zhang, Y., & Fang, X. (2020). Container image security:

Risks and solutions. IEEE Access, 8, 36580–36590.
[3]	 Google. (2022). Supply Chain Levels for Software Artifacts (SLSA).

https://slsa.dev
[4]	 National Institute of Standards and Technology. (2022). Secure

Software Development Framework (SSDF). https://csrc.nist.gov/
publications/detail/white-paper/2022/ssdf-final

[5]	 GitHub. (2023). Security best practices for GitHub Actions. https://
docs.github.com

[6]	 Jenkins. (2023). Security advisories and plugin validation. https://
www.jenkins.io/security/

[7]	 Red Hat. (2022). Tekton Pipelines for CI/CD Security. https://
redhat.com

[8]	 Sigstore. (2023). Secure signing for open-source artifacts. https://
sigstore.dev

[9]	 Open Policy Agent. (2023). Policy-as-Code for Kubernetes and CI/
CD. https://www.openpolicyagent.org

[10]	Anchore. (2022). Generating and using SBOMs with Syft and Grype.
https://anchore.com

[11]	Rekor. (2022). Tamper-evident transparency logs. https://docs.
sigstore.dev/rekor

[12]	Conftest. (2023). Testing structured configurations with OPA.
https://www.conftest.dev

[13]	Docker Inc. (2022). Best practices for container image security.
https://docs.docker.com

[14]	[1]Researcher, “RANSOMWARE AT TACKS ON CRITICAL
INFRASTRUCTURE: A STUDY OF THE COLONIAL PIPELINE
INCIDENT”, International Journal of Research In Computer
Applications and Information Technology (IJRCAIT), vol. 7, no.
2, pp. 1423–1433, Nov. 2024, doi: 10.5281/zenodo.14191113

[15]	Vyas, K., & Sarraf, C. (2021). Securing DevOps pipelines: Best
practices. ACM DevOps Security, 12(4), 16–27.

[16]	GitLab. (2022). Secure software delivery and pipeline hardening.
https://about.gitlab.com

