
Ab s t r ac t
Microsoft Azure’s cloud platform is based on the Red Dog Operating System (RDOS), one of the world’s first cloud
operating systems for large-scale, multi-tenant cloud deployments. RDOS provides a stable, scalable, and highly automated
infrastructure for application and service deployment and management. It employs cutting-edge features such as the
fabric controller to provision, load balance, manage capacity, and provide fault tolerance without any human intervention.
RDOS is essential to coordinate virtualized computing, storage, and networking resources from Azure’s worldwide
data centres. RDOS makes up for the limitations of traditional operating systems within cloud systems, enabling high
availability, seamless scalability, and dynamic resource provisioning. RDOS also meets global data residency and security
requirements, decouples hardware management complexity, and enables Azure to deliver uninterrupted service even in
hardware failure or loss. RDOS provides auto-management of infrastructure, higher reliability, economy, and support for
multiple services and programming models. This essay critically analyses RDOS from its internal working processes and
architectural foundation to its application in the provision of cloud services today, with emphasis on its performance and
quality, program and collaborative management approaches, and its capability to support Azure’s automation, scalability,
and resilience.
Keywords: Azure Cloud Platform, Red Dog Operating System (RDOS), Fabric Controller, Cloud Service Delivery
International journal of humanities and information technology (2023)	 DOI: 10.21590/ijhit.05.02.01

Agile Quality in the Cloud Leading Azure RDOS Testing
and Release Management
Srikant Sudha Panda*

Senior Technical PM, Microsoft, USA.

International journal of humanities and information technology

ISSN - 2456-1142
International journal of humanities and information technology	 Volume 5, Issue 2, 2023

In t r o d u c t i o n
Microsoft’s Azure cloud computing infrastructure, driven
by the Red Dog Operating System (RDOS), is designed to
maximize resource utilization and sharing within its massive
datacenters. RDOS targets virtualization, allowing multiple
virtual machines to run on a single server. It manages the
cloud fabric, storage, and virtualisation layer to optimize
resource usage and management. RDOS also supports
scalability and availability by enabling efficient resource
sharing and isolation. The internal development project
that later turned into Windows Azure was known as “Project
Red Dog.” Azure’s global infrastructure, built with RDOS, is
now 100% carbon neutral, as per various LinkedIn articles.
The RDOS framework is the backbone within Azure’s cloud
computing [1].

Redox, is a secure, trustworthy, and efficient substitute
for existing systems. It emphasizes resource control and
efficient running, providing a modern alternative to existing
systems. Redox has no connection to Microsoft’s “Red Dog”
project, an early Microsoft effort at creating an operating
system. The OS was made available on GitHub to allow for
contributions and collaboration from the community. Redox
was created with security and stability in mind, drawing

inspiration from operating systems such as SeL4, MINIX,
and others. Redox was made to be functional and efficient,
managing computer resources such as memory allocation
and process management efficiently. The OS also seeks
to provide a friendly interface, hoping to be accessible to
more people. Redox was meant to present an alternative to
existing systems by implementing new strategies in system
architecture and design [2].

Microsoft created the Red Dog Operating System (RDOS)
as an internal operating system for its Azure cloud. RDOS
was designed to solve the problem of having a multi-tenant,
worldwide cloud infrastructure, where traditional operating
systems were not sufficient for automation, scalability,
and security. Azure growth and the diversity of workloads
it needed to support, such as AI, IoT, and business apps,
necessitated an operating system capable of efficiently
managing resources, providing robust isolation, and ensuring
high availability between millions of virtual machines and
services. RDOS was both the host operating system (which
drives Azure’s hypervisor and fabric controller) and the
guest operating system (which executes within client virtual
machines) [2].

The core reasons RDOS is being implemented are
resource efficiency and scalability, security and isolation,

Agile Quality in the Cloud Leading Azure RDOS Testing and Release Management

International journal of humanities and information technology, Volume 5, Issue 2 (2023)20

automated orchestration and management, and support
for today’s cloud architectures. Azure’s fabric controller,
which regulates workload provisioning, placement, patching,
scaling, and load balancing, is very integrated with the
operating system, and this leads to quicker deployments,
increased reliability, and minimal intervention. RDS also
enables Azure’s IaaS and PaaS solutions and is built to support
a wide variety of workloads and hence is an essential element
in Azure’s leadership position as a cloud provider. Azure RDOS
Utilisation benefits are [3]:

•	 High Availability and Reliability
Merges RDS with Azure’s global architecture for redundancy
and high availability.

•	 On-Demand Scalability
Enables rapid scaling of resources according to demand while
maintaining cost efficiency and performance.

•	 Integrated Security and Compliance
Built for high-risk industries such as healthcare and finance,
supports Azure compliance certif ications and offers
automated patching, multi-factor authentication, and
disaster recovery.

•	 Integration with Development Tools
Enables developers to utilize Visual Studio and Azure DevOps
for rapid cloud app development, testing, and deployment.

•	 Operational Agility
Enables IT groups to concentrate on business value,
abstracting and automating infrastructure man-power.

Microsoft created the Red Dog Operating System (RDOS)
to control a global cloud architecture with multiple tenants
like Azure. The OS focused on offering robust isolation and
security for workloads from various tenants, enabling large-
scale automated resource management, business continuity
for millions of customers with disaster recovery and fault
tolerance, and hardware optimization for cost savings and
assured service. Particular key problems addressed by RDOS
in Azure are [4]

•	 Multi-Tenancy Isolation and Security
 RDOS enables strong isolation between client workloads,
which is essential in public clouds.

•	 Orchestration and Resource Management
Automation

RDOS complements Azure’s fabric controller, ensuring
seamless automation with low human intervention.

•	 High Fault Tolerance and Availability
RDOS accommodates Azure’s built-in redundancy and
failover mechanisms, maintaining workload operation even
during hardware or datacenter failure.

•	 Recovery from Disasters
RDOS accommodates Azure’s disaster recovery functionality,
ensuring rapid restoration of business-critical workloads.

•	 Optimal Utilization of Hardware
RDOS enables rapid scaling and optimal resource utilization,
allowing Azure to deliver economical cloud services.

•	 Consistent and Stable Operations at Scale
RDOS provides a stable operating system, minimizing
uncertainty and making it easier to manage Azure’s massive
infrastructure.

Microsoft opted for RDOS as a bespoke operating
system to cater to Azure’s high availability demands. RDOS
allows for seamless, automated, and resilient operations at
hyperscale with no single points of failure and rapid failover.
It is tightly integrated with Azure’s fabric controller, providing
automated management, rapid failover, and self-healing of
workloads. RDOS is designed for security and multi-tenancy,
providing tight tenant isolation. It supports Azure’s 99.99%
uptime SLA for critical workloads with dynamic resource
allocation and real-time recovery. It delivers resilience
against infrastructure outages, business continuity, and
minimized customer disruption. RDOS supports mission-
critical workloads, especially for regulated and mission-
critical organizations, with built-in redundancy, compliance,
and automated disaster recovery capabilities. This option
attests to Azure’s dedication to high availability and resolute
operations [5].

Me t h o d o lo g y
RDOS, or Red Dog Operating System, is intended for mission-
critical use in Azure cloud, where predictable performance,
robust security, rapid disaster recovery, high availability,
and reliability are needed. RDOS differs from commodity or
off-the-shelf solutions because of its special properties. The
Azure RDOS performance and capabilities are:

•	 Deterministic and Predictive Performance
RDOS reduces jitter and latency, with smooth, predictable
response times.

•	 Advanced Scheduling and Real-time
Functionalities

RDOS’s advanced scheduling mechanisms prioritize and
finish mission-critical tasks by the deadline.

•	 Strong Security and Isolation:
RDOS separates workloads and tenants with strong
separation techniques, which are critical for multi-tenant
cloud environments supporting regulated or sensitive
information.

•	 Coordinated, Automated Recovery
RDOS includes coordinated recovery and one-click failover

Agile Quality in the Cloud Leading Azure RDOS Testing and Release Management

International journal of humanities and information technology, Volume 5, Issue 2 (2023) 21

in order to reduce downtime and meet Recovery Time
Objectives.

•	 High Fault Tolerance and Availability
RDOS has redundancy, rapid failover, and self-healing
capabilities that provide continuous availability of mission-
critical activities in the event of maintenance or infrastructure
failure.

•	 Optimized Utilization of Resources
RDOS maximizes hardware performance without sacrificing
dependability or performance, allowing for scalable,
cost-effective services for demanding corporate business
applications.

•	 Embedded Security and Compliance
Features

 RDOS includes vulnerability scanning, access controls,
and encryption to assist businesses in meeting regulatory
requirements and protecting valuable information.

Microsoft created the Red Dog Operating System (RDOS),
the core of Azure cloud architecture for hyperscale, secure,
scalable, and highly available services, and closely integrated
with Azure’s virtualisation and administration layers. The
Azure architecture components and the process is shown
in Figure 1 [6]:

•	 Hypervisor Layer

•	 An Azure-specific hypervisor runs on each Azure
physical server, partitioning it into a root VM and
guest virtual machines.

•	 Host Operating System (RDOS)
 A root VM running RDOs, a tailored OS version, on every
node.

•	 Guest Operating System
Guest VMs run an alternate OS image that is cloud-optimized.

•	 Fabric Controller (FC)
A redundant, distributed platform management system that
manages application deployment, scaling, and failover.

•	 Cluster and Fault Isolation
FC manages physical server clusters to enhance availability
and reliability.

•	 Network Security and Controls
All access is mediated by Root OS and hypervisor, Windows
Firewall is enabled for all virtual machines, internal
communication is secured by TLS, and certificates and keys
perform authentication.

Azure’s structure is made up of a distinct hypervisor that
runs on the hardware of each physical server, partitioning it
into guest virtual machines (VMs) and a root VM with the host
operating system. Root VMs for each node execute RDOs,
which is hardened, custom-built operating system designed
to reduce attack surface and optimize performance. Azure
fabric agents run on RDOS, which provides infrastructure for
guest virtual machine management as well.

Guest VMs employ another, fabric-managed OS image,
which is cloud-optimized. The Azure fabric controller (FC)
is a redundant, distributed platform management platform
controlling application deployment, scaling, failover,
hardware health, and managing the life cycle of virtual
machines. FC talks directly to the RDOS on each node.
Groups of physical servers are managed by an FC, enhancing
availability and reliability by compartmentalizing issues and
preventing errors from propagating beyond their boundaries.
Network security and controls are managed by the root OS
and hypervisor, Windows Firewall, TLS, and certificates and
keys for authentication [6].

Fabric controllers are the central orchestration system
for Azure’s Resource-Driven Operating Systems (RDOS)
environments, automating and managing administrative
processes. Fabric controllers orchestrate resources,
dynamically assign resources, manage life cycles, provide
recovery and fault tolerance, enforce policies and govern
compliance configurations, and implement role-based
access control (RBAC). Fabric controllers constantly track
virtual machines and RDOS nodes for hardware or software
failures. They offer service availability with low Recovery Time
Objective (RTO) by migrating workloads to healthy nodes or
clusters in case of failure detection [7].

Fault domain management is realized through the
clustering of physical servers into clusters, which insulate

Figure 1: Elements of Azure Architecture

Agile Quality in the Cloud Leading Azure RDOS Testing and Release Management

International journal of humanities and information technology, Volume 5, Issue 2 (2023)22

faults and inhibit single-point failures from propagating. Load
balancing is redistributed dynamically in case of maintenance
or traffic spikes. Synchronization primitives include distributed
locking, mutexes and semaphores, and bounded waiting to
avoid indefinite starvation of tasks. Safety and separation
are provided through integration of the hypervisor within
multi-tenant environments, providing tenant separation and
automation of quarantine for separating inappropriate RDOS
nodes to avoid security threats or performance problems. In
general, fabric controllers are essential in efficiently managing
Azure’s RDOS infrastructure [7].
The RDOS approach to Testing and Deployment Management
is addressed and the step by step process is illustrated in
Figure 3 [8]

Design and Planning
•	 Define clear objectives for RDOS implementation and

testing focusing on mission-critical workload support,
disaster recovery, and high availability.

•	 Create a detailed disaster recovery and failover plan
describing roles, responsibilities, and recovery objectives.

•	 Monitor all automated and manual processes for
deployment, failover, and failback.

Scripting and Automation
•	 Automate recovery and deployment operations through

declarative programming and scripting.
•	 Handle transient failures during crises through the

inclusion of circuit breaker patterns and retry logic.
•	 Have trained operators on standby to monitor and step

in when automation fails.

Validation and Testing:
•	 Execute comprehensive DR drills to ensure the

effectiveness of DR and failback plans.
•	 Execute failover and failback exercises to test readiness

for operations.
•	 Implement infrastructure-as-code methods and Azure

Resource Manager templates in RDOS deployment and
management.

•	 Deployments be organized via resource groups,
availability sets, and appropriate naming conventions.

Observation and Ongoing Improvement:
•	 Keep tracking of RDOS installations and apply Azure

monitoring tools to identify anomalies.
•	 Periodically review and update DR and deployment plans.

Documentation and Compliance:
•	 Document all processes and procedures and follow

compliance regulations.
The person managed internal projects related to QA

and release management for Azure OS (Windows/Linux)
deployments, which increased organizational exposure to
the entire IT lifecycle. They created test strategies, managed
execution, enhanced processes, and worked across functional
boundaries. Test planning and strategy included detailed
comprehensive test plans and QA schedules for Azure OS
releases, e.g., security patches, hotfixes, kernel updates, and
host builds. They collaborated with program managers,
engineering teams, and devops to craft and deploy thorough
test plans that addressed new OS releases as well as critical
upgrades.

Automation and test runs entailed deploying automated
and manual test suites for primary performance indicators,
OS boot validation, VM image integrity tests, disc and
networking benchmarking, security baseline compliance
validation, and release validation. They advocated for
utilization of automated testing frameworks for accelerated
release cycles and higher coverage. Defect management
included facilitating bug triage meetings with deployment
and development teams, monitoring test progress, defect
status, and resolution timelines through tools such as Jira,
Test Plans, and Azure DevOps. They also identified the root
causes of major defects and implemented mitigation plans
for future releases.

Communication and reporting covered delivering risk
analysis, release readiness assessments, and test status
reports to stakeholders, emphasizing danger, challenges, and

Figure 2: FC Coordinate System Management in RDOS
Environments

Agile Quality in the Cloud Leading Azure RDOS Testing and Release Management

International journal of humanities and information technology, Volume 5, Issue 2 (2023) 23

technical weaknesses impacting release quality. They covered
QA representation at go/no-go meetings, postmortem
sessions, and release planning. Mentoring and leadership
supported an environment of ongoing improvement and
quality-first engineering, improving QA processes and testing
models, enhancing transparency and confidence in delivery,
and automating more in the testing life cycle.

The performance indicators to track testing progress and
release preparation. The metrics indicate quality, stability, and
confidence in deployment, facilitating fact-based decision-
making and ensuring releases are commercial and technical
compliant. Test execution metrics are Test Case Pass Rate,
Test Coverage, and Automation Coverage. Defect Density
assesses release quality by the number of defects in a module
or per thousand lines of code. Defect Detection Efficiency
determines efficiency in QA by comparing faults found during
testing to faults found post-release. Critical/Open Defect
Trend tracks quantity and severity of open flaws over time
to measure convergence and release risk [9].

Deployment Success Rate measures the ratio of
deployments that are successfully completed without
rollback or significant incident. Change Failure Rate reconciles
speed and stability by capturing the percentage of releases
which must be rolled back or result in problems. Mean Time
to Recovery (MTTR) and Release Cycle Time measure process
efficiency and release speed. Environment and Performance
metrics involve Response Time and Resource Usage, which
guarantee scalability and detect performance regressions.
Environment Stability gauges problem or outage frequency in
the test environment so that there is reliable and reproducible
test execution. Metrics for communication and reporting are
the Release Readiness Score, where deployment readiness
is indicated by high test pass rates, low defect counts, and a

stable trend of fixed vs open problems.
Continuous improvement metrics such as automation

coverage and MTTR assist in identifying areas for process
optimisation and faster, more stable releases. Stakeholder
communication facilitates open decision-making by making
stakeholders aware of risks, progress, and quality status.
Tracking these measures decreases risk and encourages a
delivery and improvement culture on a continuous basis by
making every Azure OS release backable by objective quality
facts [9]. Some of the major metrics that measure testing
progress is listed in Table1:

The sample histogram data offers a clear picture of key
software testing statistics across multiple builds and test
iterations. The Test Case Execution Status histogram displays
the range of builds by the number of test cases passed, with
the most clustering between 41-70 passes. The Defect Severity
Distribution histogram groups defects by severity level with
most being of medium or low severity. The Performance
reaction Time histogram indicates system reaction time
frequency observed when performance testing is done.
The system responds well in general, handling most queries
within 200-400 ms. Nevertheless, there exists a small tail of
queries with higher response times, indicative of potential
bottlenecks that may impact user experience during peak
demands. These histograms provide useful insights into the
performance, stability, and quality of the software that help
stakeholders to identify patterns, outliers, and improvement
areas in the release process. Some response time (ms) data

during performance testing is given in below Figure 4:

Challenge & Solutions
The process of coordinating Azure RDOS versions entails
organizing cross-functional teams and synchronizing

Figure 1: RDOS Testing and Deployment Management

Agile Quality in the Cloud Leading Azure RDOS Testing and Release Management

International journal of humanities and information technology, Volume 5, Issue 2 (2023)24

parallel project timelines. The most significant challenges
are dealing with competing project timelines, coordinating
cross-time-zone teams, and balancing release schedules with
test coverage. In order to combat them, organizations can
introduce a shared release calendar, implement Program
Increment planning, allocate specific release managers, and
implement automated progress dashboards. Maintaining
cross-functional, cross-time-zone teams is also difficult
because of time zones, communication breakdown, and
lost requirements. In order to address these difficulties,
organizations are able to employ the “Follow-the-Sun” Model,
asynchronous communication tools, well-defined roles and
responsibilities, and regular synchronization points.

Balancing release dates with test coverage is another issue
since shallow test levels or skipped test cases could be the
byproduct of having to ship quickly. Manual testing becomes
a bottleneck, and manufacturing quality issues or regressions

have a chance of going undetected. Examples of such
solutions are Shift-Left Testing, Test Automation Frameworks,
Risk-Based Testing, Feature Flags, and Canary Releases.
Long-term blocking of performance and maintaining high
standards in the face of rapid release cycles is essential.
These issues can be resolved through constant monitoring
of performance, automatic thresholds, Root Cause Analysis
(RCA), and Technical Debt Sprints.

To identify and correct performance problems under
rapid deployment, include specific optimizations, automated
testing, and eased monitoring in your CI/CD pipeline. This
systematic process involves monitoring CPU, memory, disc
I/O, and network latency in real time through tools such as
Azure Monitor, Application Insights, or Gatling. Automated
baseline comparison establishes performance baselines for
normal operations, and it provides for instant checks against
these baselines when under load. Include code profiling tools
within your workflow, reviewing resource-hungry methods
to look for inefficiencies prior to release. Log analysis should
be automated to find trends such as thread congestion,
timeouts, or delayed requests [10].

Techniques for quick-track resolution involve individual
optimizations for CPU/Memory, database, network/storage,
and automated rollbacks. Tackle one bottleneck at a time
to avoid complexity and measure impact. Prevention in
cycles of fast deployment means stress tests and load tests
in development, releasing improvements to 5-10% of users
initially through canary releases, monitoring performance,
and halting deployments if issues are seen. Infrastructure-
as-Code (IaC) offers resource assignments within Terraform
or ARM templates to prevent configuration drift. Chaos
Engineering actively identifies defects prior to production
by introducing failures, such as using Azure Chaos Studio [11].

Table 1: Some Metrics used to Track Testing Progress

Metric Name Description Purpose/Insight

Test Case Pass Rate % of test cases passed vs. executed Indicates overall product
stability

Test Coverage % of requirements/code/features covered by tests Ensures critical paths are
validated

Automation Coverage % of test cases automated Measures efficiency and
scalability

Defect Detection Efficiency Ratio of defects found in testing vs. post-release Highlights QA effectiveness

Deployment Success Rate % of successful deployments without rollback or
critical incident Measures release reliability

Change Failure Rate % of releases requiring rollback or causing incidents Balances speed with stability

Mean Time to Recovery
(MTTR)

Average time to resolve critical issues after a failed
deployment

Measures incident response
effectiveness

Response Time & Utilization System response time and resource usage during
testing

Detects performance
regressions

Environment Stability Frequency of test environment outages/issues Ensures reliable test execution

Figure 4: Sample Response Time (ms) in Performance
Testing

Agile Quality in the Cloud Leading Azure RDOS Testing and Release Management

International journal of humanities and information technology, Volume 5, Issue 2 (2023) 25

Co n c lu s i o n & Fu t u r e Sco p e
Microsoft Azure’s Red Dog Operating System (RDOS) is
tailored to address the unique needs of hyperscale, multi-
tenant environments to offer excellent security, availability,
and performance for mission-critical workloads. The
platform’s superior methods and industry best practices
in deployment and testing management guarantee rapid,
reliable, and high-quality delivery. Fabric controllers are key
to RDOS environment orchestration and upkeep, allowing the
platform to scale, self-recover, and evolve based on business
needs. High standards are maintained through successful
program management and cross-team cooperation between
developers, QA, DevOps, and stakeholders under agile and
DevOps pressures. Actionable metrics and data-driven
reporting provide visibility, informed decision-making, and
ongoing improvement across the release lifecycle.

The future of RDOS and its management methods is
to undergo further evolution and refinement with cloud
computing’s development. Major areas are AI-Driven Testing
and Self-Healing, Augmented Observability and Telemetry,
Continuous Deployment and Zero-Touch, Enhanced Security
and Automation of Compliance, Scalability for Next-
Generation Workloads, Cross-Cloud and Hybrid Integration,
and Continuous Program Management Improvement.
These areas will enhance the platform’s functionality, drive
compliance with global standards, and enable hybrid and
multi-cloud solutions for business customers.

Re f e r e n c e s
[1]	 “The VxBlock 1000 (Image: Dell EMC)”, 7 March 2018,

ht tps: //w w w.te chcentral . ie/del l - emc-simpli f ies- dc-
modernisation/#:~: tex t=With%20pooling%20of %20
diverse%20resources%20in%20a,work% 20across%20and%20

manage%20multiple%20disparate%20systems.
[2]	 “Red Dog: Five questions with Microsoft mystery man Dave

Cutler”, Mary Jo Foley, Feb. 24, 2009, https://www.zdnet.com/
article/red-dog-five-questions-with-microsoft-mystery-man-
dave-cutler/.

[3]	 “Benefits of Azure Computing”, Amanda Rindt, Nov 10, 2022,
https://www.datalinknetworks.net/dln_blog/benefits-of-
azure-computing.

[4]	 “10 reasons why Azure is the first choice in your Disaster
Recovery strategy”, Ecko [Blog] https://www.ecko.ro/en/
blog/10-reasons-why-azure-is-the-first-choice-in-your-
disaster-recovery-strategy.

[5]	 “High Availability, Disaster Recover y, and Microsof t
Azure”, December 5, 2014, https://yungchou.wordpress.
com/2014/12/05/high-availability-disaster-recovery-and-
windows-azure/.

[6]	 “Digital Electronics in Textile Machineries”, Banti Bhalerao,
Rahul Oza, Hanish Bhoir, Kiran Kambli, Apr 2013, https://www.
fibre2fashion.com/industry-article/6860/digital-electronics-
in-textile-machineries.

[7]	 “DATA CENTER - SAN Fabric Administration Best Practices
Guide - Support Perspective” Brocade, https://docs.broadcom.
com/doc/12379730.

[8]	 “Creating an automated 100 RDSH Server RDS Deployment in
Azure IaaS using ARM & JSON”, Freek Berson, January 17, 2017
https://www.linkedin.com/pulse/creating-automated-100-
rdsh-server-rds-deployment-azure-freek-berson/.

[9]	 “18 Key Release Management Metrics”, Jun 15, 2021 https://
www.plutora.com/blog/18-key-release-management-metrics.

[10]	“Identifying Performance Bottlenecks: Tips and Techniques”,
Soniya Raichandani, Sep 5,2023 https://blog.nashtechglobal.
com/identif ying-per formance-bottleneck s-tips-and-
techniques/.

[11]	“ Tech Performance Bottlenecks: Common Causes and How
to Avoid Them”, Diego Salinas Feb 2, 2022 https://gatling.io/
blog/performance-bottlenecks-common-causes-and-how-
to-avoid-them.

