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ABSTRACT

Autonomous vehicles (AVs) rely on adaptive, data-driven decision-making to advance intelligent transportation systems.
While machine learning (ML) enhances perception, prediction, and cooperation in dynamic environments, the large-scale
deployment of connected AVs (CAVs) demands scalable computational frameworks that guarantee safety, reliability, and
cybersecurity. This paper proposes a novel layered architecture that integrates deep reinforcement learning for adaptive
decision-making, federated learning for distributed and privacy-preserving model updates, and graph neural networks
(GNNs) for modeling cooperative vehicle interactions. A dedicated safety assurance layer is incorporated to bolster reliability
through real-time anomaly detection, uncertainty quantification, and fail-safe redundancy. The system is evaluated using a
hybrid SUMO-CARLA simulation framework and real-world datasets (KITTI, Argoverse). Results demonstrate a 21% increase
in decision accuracy, a 34% reduction in latency, and a 50% decrease in collision rates compared to baseline systems. This
work provides a comprehensive and scalable framework that significantly enhances the safety and efficiency of connected
autonomous vehicle ecosystems
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Autonomous vehicles (AVs) rely on adaptive, data-driven
decision-making to enhance intelligent transportation.
Traditional rule-based AV frameworks struggle with urban
dynamism and unpredictable pedestrian behavior. They
also face challenges in adverse weather and unstructured
road layouts. Machine learning (ML) enables vehicles to
learn from multi-modal sensor data—LiDAR, radar, and
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cameras—providing robust perception, predictive trajectory
modeling, and adaptive decision-making. Connected vehicle
technologies further allow AVs to share information with
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infrastructure and other vehicles, improving traffic efficiency,
safety, and collective intelligence.

Importance of Machine Learning in Avs

Machine learning is indispensable for enabling AVs to
perceive their environment accurately. Deep learning
algorithms, particularly Convolutional Neural Networks
(CNNs), allow vehicles to detect lanes, pedestrians, traffic
signs, and other vehicles with high precision. ML algorithms
synthesize data from cameras, LiDAR, and radar to generate
a comprehensive and real-time representation of complex
driving conditions.

Unlike rule-based systems, ML-based decision-
making models can adapt to changing traffic conditions.
Reinforcement learning (RL), for instance, enables vehicles
to learn optimal driving policies through continuous
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Figure 1 : Importance of Machine Learning in AVs
The diagram illustrates the core applications of ML,
including sensor-based perception, trajectory prediction,
adaptive decision-making, and safety assurance, which
together enable robust autonomous operation in dynamic
environments.
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environmental interaction. This approach results in more
human-like driving behavior, allowing AVs to execute
maneuvers such as passing, merging, and navigating
intersections safely and intelligently.

The predictive capability of ML constitutes a significant
advantage for AVs. Trajectory prediction models allow an
AV to anticipate the future actions of other vehicles and
pedestrians. This foresight substantially reduces accident
risks and facilitates smoother navigation in congested urban
areas. Such predictive intelligence is crucial for proactive
traffic management and safety.

The proliferation of Vehicle-to-Everything (V2X)
communication is further enhanced by ML algorithms,
enabling cooperation among connected vehicles. Graph
neural networks (GNNs) allow AVs to communicate intentions,
learn collective traffic patterns, and make coordinated

System Overview
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Decision- Communication

Figure 2 : System Overview

The framework integrates five core layers: Perception
(multi-sensor fusion), Decision (reinforcement learning),
Communication (V2X technologies), Cooperation (graph

neural networks), and Safety (anomaly detection and
redundancy). Arrows indicate the flow of data and control
between layers, highlighting the closed-loop, safety-centric
design.
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decisions. This shared intelligence improves road safety,
alleviates traffic congestion, and enhances large-scale traffic
management.

Safety remains the paramount concern in AV deployment. ML
enhances safety by facilitating anomaly detection, quantifying
predictive uncertainty, and mitigating system vulnerabilities.
Techniques such as Bayesian modeling and autoencoder-based
anomaly detection provide robustness against errors and ad-
versarial attacks. By incorporating fail-safe mechanisms and
enabling real-time monitoring, ML significantly increases the
dependability of autonomous systems.

Scalable Architectures for Safe and Connected
Autonomous Vehicles

Autonomous vehicles require architectures that are
intelligent, adaptable, robust, secure, and capable of real-
time data processing. Centralized architectures often face
challenges related to security, communication overhead, and
computational speed. Scalable architectures address these
issues by employing layered safety measures, distributed
intelligence, and cooperative communication. However,
the integration of ML components into these architectures
introduces unique functional safety challenges that must be
addressed to ensure system-wide reliability [11]. Federated
learning, for example, enhances scalability and data privacy
by enabling vehicles to collaboratively train models without
sharing raw data with a central server. Graph neural networks
(GNNs) model inter-vehicle cooperation, allowing data
exchange for coordinated decision-making on congested
roads. Cooperative intelligence is essential for coordinating
platoons, mergers, and intersections. Scalable architectures
also depend on Vehicle-to-Everything (V2X) communication,
which enables seamless collaboration between networks,
infrastructure, and vehicles for timely and secure data
exchange. However, scalability must not compromise safety.
Therefore, these architectures incorporate dedicated safety
modules featuring fail-safe redundancy, anomaly detection,
and uncertainty quantification. These systems ensure
that vehicles can resort to backup mechanisms—such as
controlled stops or redundant braking systems—in the event
of sensor malfunctions, communication failures, or cyber-
attacks. Predictive diagnostics further enhance reliability by
identifying potential failures before they become critical.
Overall, connected AV systems necessitate a multi-layer,
cooperative, and safety-centric architectural model that
can scale according to operational demands. By integrating
distributed learning, cooperative intelligence, and resilient
safety mechanisms, these architectures pave the way for
the widespread deployment of autonomous vehicles, where
efficiency, trustworthiness, and resilience are foundational to
intelligent transportation systems.

Novel Contributions
This paper makes the following key contributions to the field
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of autonomous vehicle research:

A Novel Layered Architecture

We propose a comprehensive, safety-centric, and
scalable architecture that integrates perception, decision,
communication, cooperation, and safety layers into a unified
framework for Connected Autonomous Vehicles (CAVs),
designed to overcome the limitations of siloed and rigid
rule-based systems.

Federated Learning for Scalable and Private
Learning

We implement a federated learning framework tailored
for AV fleets, enabling continuous, distributed model
improvement while preserving data privacy and significantly
reducing communication overhead compared to centralized
approaches.

GNN-based Cooperative Intelligence

We leverage Graph Neural Networks to model and optimize
multi-vehicle interactions dynamically, enabling collective
decision-making for maneuvers like merging and intersection
crossing, which significantly improves traffic efficiency and
safety.

An Integrated Safety Assurance Layer

We introduce a proactive safety layer combining real-time
autoencoder-based anomaly detection, Bayesian uncertainty
quantification, and fail-safe mechanisms to ensure system
resilience against sensor failures, adversarial attacks, and
unforeseen edge cases.

Empirical Validation

We provide extensive empirical evaluation through a
hybrid SUMO-CARLA co-simulation and real-world dataset
benchmarking, demonstrating significant improvements
in decision accuracy (21%), latency (34%), and collision rate
(50%) over baseline systems.

LITERATURE SURVEY

Machine Learning in Autonomous Vehicles

Recent progress in autonomous driving is largely attributable
to applying machine learning (ML) to core modules such as
perception, localization, planning, and trajectory prediction.
Convolutional Neural Networks (CNNs) have become the de
facto standard for object detection and scene understanding,
enabling real-time, reliable recognition of pedestrians,
vehicles, and road infrastructure. Beyond perception,
reinforcement learning (RL) has been employed for decision-
making and adaptive driving policies, allowing vehicles to
learn optimal behaviors for complex traffic scenarios through
trial and error in simulated environments. Furthermore,
ML-based sensor fusion techniques have improved
the robustness of localization and mapping systems in

dynamic and uncertain operating conditions. Despite these
advancements, ML models still face challenges related to
generalization across diverse environments and ensuring
reliability in edge cases.

Connected Vehicle Architectures

The evolution of Connected Autonomous Vehicles (CAVs)
has been propelled by advances in communication systems,
particularly Vehicle-to-Everything (V2X) protocols that enable
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),
vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P)
communication. This connectivity facilitates cooperative
navigation, improving collaborative maneuvers, congestion
reduction, and accident avoidance. Several simulation
platforms and architectures, such as Apollo and CARLA, have
been developed to test and implement connected vehicle
technologies. However, these systems often struggle with
scalability due to the demands of real-time data processing
and vehicle-to-vehicle interaction. As the number of
connected vehicles increases, the need for low-latency, high-
reliability communication that supports rapid computation
becomes critical.

Safety-Driven Frameworks

Safety and reliability are central concerns in autonomous
vehicle research, given the life-critical nature of driving de-
cisions. Recent studies have focused on enhancing the ex-
plainability and transparency of ML-driven decision-making,
where interpretable models are vital for garnering trust from
regulators and the public. Research has also explored methods
to improve the robustness of ML systems against adversarial
perturbations and to quantify predictive uncertainty, enabling
vehicles to operate more cautiously under uncertain condi-
tions. These safety-focused strategies strengthen AV systems
by providing mechanisms to handle unexpected events. A
significant challenge is the absence of unified validation and
verification frameworks capable of comprehensively evaluat-
ing safety across diverse operational design domains. Existing
testing approaches remain inadequately integrated, and ques-
tions regarding how to guarantee provable safety before large-
scale deployment remain open.

Research Gap Identification

Although the literature extensively covers the use of ML for
autonomous vehicle perception, decision-making, and con-
nectivity, significant gaps remain. Most notably, current re-
search lacks an integrated framework that combines scalabil-
ity with safety-awareness for Connected Autonomous Vehicle
(CAV) ecosystems. Techniques like federated learning offer
potential for privacy-preserving, distributed model training
in vehicular networks, avoiding communication bottlenecks
and adapting to varying environments. Similarly, graph neural
networks (GNNs) have demonstrated potential in modeling
inter-vehicle cooperation by capturing spatiotemporal depen-
dencies in connected traffic networks. However, these meth-
ods are seldom integrated into a fail-safe system architecture
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that incorporates redundancy and resilience against compo-
nent failures. The path forward involves designing scalable
architectures that leverage the synergies of federated learning,
cooperative intelligence, and robust failure-mode safety, en-
abling the efficient and safe real-world deployment of autono-
mous vehicles.

METHODOLOGY

System Overview

Perception Layer

This layer utilizes a suite of sensors—including LiDAR,
cameras, radar, and GPS—to perceive and interpret the
vehicle’s surroundings. Deep learning models process raw
sensor data to perform object detection, lane recognition,
and environmental mapping. By fusing data from multiple
sources, this layer generates a reliable representation of the
external environment for higher-level decision-making.

Decision-Making Layer

This layer analyzes the perceived environment to select
optimal driving actions, encompassing path planning,
obstacle avoidance, and velocity adjustment tailored to traffic
conditions. Techniques such as predictive modeling and
reinforcement learning are employed to imbue the vehicle
with human-like reasoning, enabling it to navigate complex
scenarios. The output is a safe and efficient trajectory that
guides the vehicle’s motion.

Communication Layer

This layer facilitates information exchange between the
vehicle and external entities using Vehicle-to-Everything
(V2X) technologies, including Vehicle-to-Vehicle (V2V),
Vehicle-to-Infrastructure (V2I), and Vehicle-to-Network
(V2N) communication. This extends the vehicle’s situational
awareness beyond its onboard sensors, enabling coordination
with other vehicles, access to real-time traffic data, and
enhanced performance in connected driving scenarios
through low-latency, high-bandwidth links.

Cooperation Layer

Building upon the communication layer, this layer enables
collaborative behaviors among connected autonomous
vehicles. Using algorithms such as graph neural networks
(GNNs) and distributed learning, a group of vehicles can
make collective decisions regarding intent sharing, route
negotiation, and group-level traffic flow optimization. This
cooperative intelligence enhances safety and efficiency
in maneuvers such as merging, intersection crossing, and
platooning.

Safety Layer
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This foundational layer ensures system robustness and
resilience against uncertainties, sensor failures, or malicious
attacks. It incorporates adversarial robustness, uncertainty
quantification, and fail-safe redundancy to guarantee safe
operation. In critical situations, this layer triggers fallback
mechanisms—such as controlled stops or manual override—
to prevent accidents. The integration of explainability and
validation frameworks helps achieve regulatory compliance
and instill confidence in the autonomous driving system
(ADS).

In the proposed architecture, sensor data first passes
through the ML perception and decision-making layers,
which extract features and generate candidate actions. These
locally processed models are periodically updated using
Federated Learning (FL) to ensure fleet-wide adaptability
while preserving privacy. The outputs of ML and FL are
then integrated in the Graph Neural Network (GNN)-based
cooperation layer, where vehicles exchange state and
intention information to optimize collective traffic behavior.
Finally, all decisions pass through the safety layer, which
applies anomaly detection, uncertainty quantification, and
fail-safe redundancy to ensure resilient operation under all
conditions.

Perception and Sensor Fusion

The perception module is a critical component of the
proposed architecture, enabling the system to accurately
interpret its surroundings and construct a coherent model
of the driving environment. We employ state-of-the-art deep
learning models, including Convolutional Neural Networks
(CNNs) and Transformer architectures, for object detection
and tracking. CNNs excel at extracting spatial features from
camera images, allowing for precise identification of road
signs, pedestrians, vehicles, and lane markings. Transformers
are leveraged for their ability to capture long-range
dependencies and contextual relationships in sequential
data, thereby enhancing tracking performance in dynamic
and cluttered scenes. The synergistic use of CNNs for local
feature extraction and Transformers for spatiotemporal
reasoning enables robust multi-object detection and tracking
under challenging conditions, such as adverse weather, low
light, and occlusions.

To further enhance reliability, we implement multi-sensor
fusion to integrate complementary data from LiDAR, radar,
GPS, and cameras. LiDAR provides precise geometric and
depth information, radar offers robustness in poor weather,
and cameras deliver rich semantic data. Sensor fusion is
achieved through a hybrid framework combining classical
and learning-based methods. Kalman filtering is applied for
recursive state estimation, noise reduction, and temporally
coherent prediction of object trajectories. Additionally,
attention mechanisms adaptively weight the contributions
of each sensor based on contextual cues, prioritizing the
most reliable data source under varying conditions. For
instance, radar and LiDAR inputs may be weighted more
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heavily under low visibility, while camera data may be favored
in clear daylight conditions. Through probabilistic filtering
and attention-based fusion, the perception layer constructs
a accurate online environmental model, which is crucial
for downstream decision-making and safe autonomous
navigation.

Federated Learning for Scalability

A major challenge in deploying large-scale autonomous
vehicle (AV) systems is the need to continuously improve
machine learning models in a manner that is both scalable
and privacy-preserving. Traditional centralized training
methods, which involve uploading raw sensor data
from multiple vehicles to a central server, are often
infeasible due to excessive bandwidth requirements, high
communication overhead, and privacy concerns. To address
this, our architecture incorporates Federated Learning (FL),
a distributed machine learning paradigm that enables each
vehicle to train models locally on its own sensory and driving
data. Only model updates (e.g., gradients or weights) are sent
to a central aggregator, eliminating the need to transmit raw
data. This approach not only safeguards user privacy—a
significant concern for potential adopters as identified in user
studies [12]—but also substantially reduces communication
costs.

Federated learning facilitates scalability across
geographically dispersed fleets, where vehicles encounter
conditions that vary by road type, weather, and driving
patterns. Through iterative aggregation, the global model
assimilates these diverse experiences while preserving
individual data security. This enables collaborative vehicles
to adapt more rapidly to new traffic patterns or regulations.
Techniques such as federated averaging, differential privacy,
and secure aggregation are integrated to enhance security,
mitigate the risk of model poisoning attacks, and ensure
fairness across clients. From a systems perspective, FL reduces
reliance on large data centers, improving the architecture’s
energy efficiency and cost-effectiveness. Furthermore, as a
distributed learning method, FL aligns naturally with edge
computing, allowing AVs to perform learning and inference

with minimal latency—a critical advantage for safety-critical
decision-making. By combining scalability, data privacy, and
efficient utilization of distributed data, federated learning
forms the backbone of our proposed architecture, enabling
autonomous vehicles to learn collectively while maintaining
safety and trust.

Graph Neural Networks for Cooperation

Cooperation among vehicles is essential for the safe and
efficient operation of connected autonomous vehicle (CAV)
ecosystems, particularly in dense traffic, at intersections,
and during highway merging. To enable this cooperative
intelligence, we employ Graph Neural Networks (GNNs) to
model inter-vehicle communication and decision-making.
In this abstraction, vehicles are represented as nodes in a
dynamic graph, and communication links—established via
Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I)
channels—are represented as edges. Node attributes capture
state information such as position, velocity, and intent, while
edges represent spatiotemporal relationships like relative
distances and traffic flow dependencies.

Leveraging the inherent message-passing of GNNs,
vehicles can share and aggregate information with their
neighbors to learn collective traffic patterns and make
coordinated decisions on a large scale. GNNs excel at
capturing relational dependencies that extend beyond
an individual vehicle’s field of view. For example, at an
intersection, a single vehicle lacks sufficient situational
awareness to accurately predict the actions of others. GNN-
based cooperation aggregates local observations from
multiple vehicles, allowing the system to infer overall traffic
flow and optimize maneuvers such as yielding, platooning,
and lane merging. This collaborative approach leads to
significantly improved decision-making with a reduced risk
of collisions or deadlocks. Moreover, the graph structure
dynamically adapts to changes in network topology—such
as vehicles entering or leaving communication range—
ensuring robustness in real-world traffic conditions. From a
computational standpoint, integrating GNNs into federated
and distributed frameworks enhances scalability by enabling

Table 1: Quantitative performance comparison of the proposed architecture against a centralized baseline system.

Baseline e
Metric Definition Architecture Improvement
Performance
Performance
Decision Percent:?\ge ofdr.lvmg actions deemed §afe 73% 94% 21% Improvement
Accuracy and optimal against a ground truth policy.
E2E Latency Average time del.ay from perception input 150 ms 99 ms 34% Reduction
to control actuation (ms).
Collision Rate E(L)J:;Sber of collisions per 1000 simulation ) 1 50% Reduction
Communication  Average data transmitted per vehicle per 59 GB 18GB 65% Reduction

Overhead hour (GB).
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Performance Comparison of Proposed Architecture

Improvement percentages compared to baseline systems

Decision Accuracy +21%
@ Latency Reduction -34%
ovemend o I
65% -659
Overhead - 65%
Performance Metric Baseline Performance Proposed Architecture Improvement
Decision Accuracy 73% 94% +21%
End-to-End Latency 150 ms 99 ms -34%
Collision Rate 2 per 1000h 1 per 1000h -50%
Communication Overhead 5.2 GB/h 1.8 GB/h -65%

Note: Simulation results based on hybrid SUMO-CARLA framework with real-world datasets (KITTI, Argoverse).

All improvements are statistically significant (p < 0.01).

Figure 3: Graph representing Performance Comparison
The bar chart quantifies the percentage improvement in key metrics: decision accuracy (+21%), latency reduction
(-34%), and collision rate (-50%), demonstrating the efficacy of the integrated ML-driven approach.

decentralized model training. Vehicles can learn both
cooperative strategies and local driving policies without
centralized control, reducing latency and eliminating single
points of failure. Our results demonstrate that GNN-based
cooperation provides a versatile mechanism for achieving
collective intelligence in CAVs, contributing to safer,
smoother, and more energy-efficient traffic systems.

Safety Layer and Anomaly Detection

The safety layer is the cornerstone of the proposed AV
architecture, providing system resilience against uncertainty,
sensor failures, or malicious attacks, building upon
established strategies for ML safety [11]. A core component
of this layer is real-time anomaly detection, which identifies
deviations from normal operating behavior. We utilize
autoencoders trained on normal driving data to learn
compressed latent representations of expected patterns, a
technique aligned with practical implementations for error
detection [11]. During operation, if the reconstruction error
exceeds a predefined threshold, the system flags the input
as anomalous—potentially indicating a sensor malfunction,
cyber-attack, or unexpected behavior—and triggers a safety
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alert.

Complementing this, Bayesian uncertainty estimation
provides probabilistic confidence measures for perception
and decision outputs, enabling the vehicle to assess the
reliability of its predictions. This approach combines
deterministic anomaly detection with probabilistic
uncertainty modeling. Together, they enable the system
to differentiate rare-but-valid scenarios from genuinely
hazardous conditions. The safety layer also incorporates
fail-safe mechanisms, including redundant braking systems
that offer alternative emergency stopping methods in case
of actuator failure. Fallback controllers assume command if
the primary learning-based controllers drive the vehicle into
an unsafe or unpredictable state, executing rule-based safe
maneuvers or initiating controlled stops.

Furthermore, predictive diagnostics continuously
monitor the health of hardware and software subsystems.
Predictive maintenance algorithms analyze trends in sensor
and actuator wear or performance degradation, forecasting
potential failures before they occur. This proactive approach
generates maintenance alerts and prevents malfunctions
during critical operations. Through this layered safety
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approach—integrating real-time anomaly detection,
uncertainty-aware decision-making, and robust failure
recovery—the architecture ensures structured responses to
both anticipated and unanticipated events. The safety layer
not only enhances system reliability and facilitates regulatory
compliance but also establishes a foundation for the long-
term deployment of autonomous vehicles in complex real-
world environments, adhering to a methodological approach
for functional safety in complex systems [13].

ResuLTs AND DiscussionN

Simulation Setup
To evaluate the efficacy of the proposed scalable autonomous
vehicle (AV) architecture, we conducted comprehensive
experiments using both traffic-level and perception-level
simulators. The Simulation of Urban Mobility (SUMO)
was employed to model large-scale traffic interactions,
leveraging its strength in simulating urban traffic flow and
vehicle interactions on roads with diverse vehicle types. We
simulated scenarios involving 500 connected autonomous
vehicles (CAVs) under various traffic conditions, including
highway merging, urban intersections, and cooperative
platooning. Realistic vehicle mobility traces were generated
to emulate driving dynamics, communication latencies, and
variable traffic densities, thereby testing the robustness and
scalability of the cooperation and communication layers.
For perception and sensor-level assessment, the
CARLA simulator was utilized due to its high-fidelity 3D
environments featuring realistic weather, lighting, and
traffic conditions. CARLA facilitated the testing of sensor
fusion modules integrating LiDAR, radar, and camera data
under adverse conditions such as rain, fog, and occluded
scenes. By integrating CARLA with SUMO, we established a
co-simulation framework where SUMO's traffic flow dynamics
provided the basis for realistic sensor data generation in
CARLA, creating an end-to-end validation environment.
Additionally, we benchmarked our perception models onreal-
world datasets—KITTl and Argoverse—which are annotated
for object detection, tracking, and motion forecasting. This
approach balanced the trade-off between simulation-based
scalability and real-world generalization. Experiments were
conducted across various scenarios, including different V2X
communication ranges, adversarial sensor noise injection,
and hardware fault injections, to evaluate the system'’s fail-
safe responses. This hybrid simulation environment enabled
systematic testing of perception accuracy, cooperative
decision-making, federated learning scalability, and safety
mechanism robustness in a controlled yet realistic setting.

Performance Metrics

Decision Accuracy

This metric measures the system’s ability to select safe
and optimal actions in dynamic traffic. The observed 21%

improvement is attributed to the combination of deep
learning-based perception and GNN-based cooperation,
which minimizes path planning errors and enhances the
reliability of complex maneuvers like merging, overtaking,
and intersection navigation through context-aware modeling
and inter-vehicle communication.

Latency

Latency refers to the time delay between perception input
and control output, a critical factor for real-time safe driving.
The 34% reduction in latency is primarily due to federated
learning and edge-level inference, which diminish the need
for centralized data exchange. This ensures responsive
decision-making even under high traffic loads and enables
timely interventions for critical maneuvers.

Collision Rate

This metric quantifies the frequency of accidents or near-
misses during simulations. The 50% reduction demonstrates
the effectiveness of the safety layer, including its anomaly
detection and redundancy mechanisms. Fallback controllers
and cooperative decision-sharing allow vehicles to proactively
avoid dangerous situations, significantly enhancing overall
system safety.

The architecture maintained baseline performance levels
as the number of vehicles scaled to 500, demonstrating
its scalability. However, communication overhead and
computational load present challenges for further scaling.
While federated learning alleviates some bottlenecks, future
work will require optimized communication protocols and
fully decentralized coordination to achieve larger-scale
deployment.

DiscussionN

The experimental results validate the feasibility and
effectiveness of integrating machine learning-enhanced
architectures into connected autonomous vehicle (CAV)
systems. The proposed framework demonstrates significant
improvements in safety, latency, and decision accuracy
compared to baseline methods, contributing to more reliable
and efficient autonomous driving. State-of-the-art perception
models, particularly CNNs and Transformers, achieve robust
environmental perception under diverse conditions. When
combined with sensor fusion strategies based on Kalman
filtering and attention mechanisms, they enhance tracking
performance amidst noise and uncertainty, resulting in faster
reaction times and safer maneuver execution in complex
traffic scenarios.

A key advantage of the proposed architecture is its use
of federated learning for distributed model training. By
transmitting only model parameter updates instead of raw
data, federated learning reduces communication overhead
and addresses data privacy concerns. This approach also
enables adaptation to varied driving environments, as
vehicles contribute local knowledge to enhance the global

International journal of humanities and information technology, Volume 7, Issue 3 (2025) 73



Machine Learning-Enhanced Scalable Architectures for Safe and Connected Autonomous Vehicles

model without compromising raw data privacy. Furthermore,
GNNs significantly enhance cooperative decision-making by
allowing vehicles to learn collective traffic patterns and model
interdependencies. This leads to smoother interactions
in multi-vehicle scenarios where coordination is critical
for safety, such as merging, platooning, and intersection
crossing.

However, several challenges and limitations
must be addressed to transition from
simulation to real-world deployment.

« Federated Learning in Congested Networks: While FL
reduces bandwidth, the synchronous aggregation
of updates from hundreds of vehicles could still face
significant latency in real-world scenarios with network
congestion or inconsistent 5G/6G coverage. Future
work will need to investigate asynchronous FL protocols
and more efficient compression techniques for model
updates to ensure robustness under imperfect network
conditions.

« Hardware and Computational Constraints: The proposed
multi-sensor fusion and deep learning models are
computationally intensive. Deploying them on
embedded vehicle hardware with strict power and
latency budgets remains a challenge. Optimizing
models for specific hardware (e.g., TPUs, GPUs) through
quantization and pruning will be a critical next step.

« Generalization to Extreme Edge Cases: While the safety
layer handles many anomalies, the “long tail” of rare,
unforeseen scenarios (e.g., extreme weather, complex
multi-agent interactions with irrational actors) remains
a fundamental challenge for ML-based systems.
Continuous learning and validation using real-world
driving data, along with formal methods for safety
verification, are essential to bridge this gap.

« Scalability of Cooperative Layers: The GNN-based
cooperation layer, while effective, may face scalability
issues as the number of vehicles in a communication
cluster grows very large (e.g., in dense urban centers).
Decentralized and hierarchical coordination strategies
will be necessary to manage this complexity.

Despite these limitations, the proposed architecture
optimizes communication protocols and employs
decentralized message-passing strategies to enable
low-latency cooperation among hundreds of vehicles.
It integrates anomaly detection, uncertainty estimation,
and fail-safe mechanisms to ensure robustness against
partial system failures or adversarial inputs. These results
position ML-enabled, safe, and cooperative architectures
as a promising approach for the scalable deployment of
autonomous vehicles, pending the resolution of these
practical deployment challenges.

CONCLUSION

This paper has presented a machine learning-based
architecture for connected autonomous vehicles (CAVs)
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designed to address critical challenges in scalability and safety.
The proposed framework incorporates dedicated layers for
perception, decision-making, communication, cooperation,
and safety assurance. It employs advanced sensor fusion
techniques, CNNs, Transformers, and reinforcement learning
strategies to achieve reliable environmental perception.
Adaptive driving policies enhance trajectory prediction
and maneuver execution. We leverage federated learning
to improve scalability and data privacy. This approach
reduces server load and communication overhead, while
also enabling dynamic adaptation to heterogeneous
environments. Furthermore, graph neural networks (GNNs)
facilitate intent communication, capture spatiotemporal
dependencies, and enable collective learning of traffic
patterns, resulting in improved coordination in complex
multi-agent scenarios, reduced collision rates, and enhanced
traffic efficiency.

Safety remains the core tenet of the architecture, with the
safety layer providing resilience through anomaly detection,
uncertainty estimation, and fail-safe redundancy. Advanced
computational techniques, such as autoencoder-based
anomaly detection and Bayesian uncertainty quantification,
improve prediction reliability. Redundant braking systems,
fallback controllers, and predictive diagnostics ensure the
vehicle can execute corrective responses to both anticipated
and unanticipated failures. Simulation results validate the
integrated framework, demonstrating a 21% increase in
decision accuracy, a 34% reduction in latency, and a 50%
decrease in collision rates.

Future work will focus on bridging the
gap between simulation and real-world
deployment through several concrete steps:

Physical Fleet Testing

The next critical phase is to implement and validate core
components of this architecture on a physical fleet of
autonomous vehicles to test performance under real-world
constraints and unpredictable environments.

Integration with Advanced Networks

We will explore tight integration with 5G-Advanced and 6G
vehicular networks to leverage their ultra-reliable low-latency
communication (URLLC) capabilities, which are essential for
the real-time demands of federated learning and GNN-based
cooperation at scale.

Hardware-Aware Optimization

We will focus on hardware-in-the-loop testing and optimizing
the ML models for deployment on embedded systems,
focusing on energy efficiency and computational latency.

Robustness to Adversaries

As outlined, implementing quantum-safe cryptography and
robust defensive techniques against adversarial attacks on
ML models will be prioritized to secure the entire system
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lifecycle.

By addressing these steps to enhance scalability, safety,
and security, the proposed framework represents a significant
step toward realizing the vision of reliable, intelligent, and
connected autonomous transportation systems.
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