
Ab s t r ac t
Autonomous vehicles (AVs) rely on adaptive, data-driven decision-making to advance intelligent transportation systems. 
While machine learning (ML) enhances perception, prediction, and cooperation in dynamic environments, the large-scale 
deployment of connected AVs (CAVs) demands scalable computational frameworks that guarantee safety, reliability, and 
cybersecurity. This paper proposes a novel layered architecture that integrates deep reinforcement learning for adaptive 
decision-making, federated learning for distributed and privacy-preserving model updates, and graph neural networks 
(GNNs) for modeling cooperative vehicle interactions. A dedicated safety assurance layer is incorporated to bolster reliability 
through real-time anomaly detection, uncertainty quantification, and fail-safe redundancy. The system is evaluated using a 
hybrid SUMO-CARLA simulation framework and real-world datasets (KITTI, Argoverse). Results demonstrate a 21% increase 
in decision accuracy, a 34% reduction in latency, and a 50% decrease in collision rates compared to baseline systems. This 
work provides a comprehensive and scalable framework that significantly enhances the safety and efficiency of connected 
autonomous vehicle ecosystems
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In t r o d u c t i o n

Background 
Autonomous vehicles (AVs) rely on adaptive, data-driven 
decision-making to enhance intelligent transportation. 
Traditional rule-based AV frameworks struggle with urban 
dynamism and unpredictable pedestrian behavior. They 
also face challenges in adverse weather and unstructured 
road layouts. Machine learning (ML) enables vehicles to 
learn from multi-modal sensor data—LiDAR, radar, and 
cameras—providing robust perception, predictive trajectory 
modeling, and adaptive decision-making. Connected vehicle 
technologies further allow AVs to share information with 

infrastructure and other vehicles, improving traffic efficiency, 
safety, and collective intelligence.

Importance of Machine Learning in Avs
Machine learning is indispensable for enabling AVs to 
perceive their environment accurately. Deep learning 
algorithms, particularly Convolutional Neural Networks 
(CNNs), allow vehicles to detect lanes, pedestrians, traffic 
signs, and other vehicles with high precision. ML algorithms 
synthesize data from cameras, LiDAR, and radar to generate 
a comprehensive and real-time representation of complex 
driving conditions.

Unlike rule-based systems, ML-based decision-
making models can adapt to changing traffic conditions. 
Reinforcement learning (RL), for instance, enables vehicles 
to learn optimal driving policies through continuous 
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environmental interaction. This approach results in more 
human-like driving behavior, allowing AVs to execute 
maneuvers such as passing, merging, and navigating 
intersections safely and intelligently.

The predictive capability of ML constitutes a significant 
advantage for AVs. Trajectory prediction models allow an 
AV to anticipate the future actions of other vehicles and 
pedestrians. This foresight substantially reduces accident 
risks and facilitates smoother navigation in congested urban 
areas. Such predictive intelligence is crucial for proactive 
traffic management and safety.

The proliferation of Vehicle-to-Everything (V2X) 
communication is further enhanced by ML algorithms, 
enabling cooperation among connected vehicles. Graph 
neural networks (GNNs) allow AVs to communicate intentions, 
learn collective traffic patterns, and make coordinated 

decisions. This shared intelligence improves road safety, 
alleviates traffic congestion, and enhances large-scale traffic 
management.

Safety remains the paramount concern in AV deployment. ML 
enhances safety by facilitating anomaly detection, quantifying 
predictive uncertainty, and mitigating system vulnerabilities. 
Techniques such as Bayesian modeling and autoencoder-based 
anomaly detection provide robustness against errors and ad-
versarial attacks. By incorporating fail-safe mechanisms and 
enabling real-time monitoring, ML significantly increases the 
dependability of autonomous systems.

Scalable Architectures for Safe and Connected 
Autonomous Vehicles
Autonomous vehicles require architectures that are 
intelligent, adaptable, robust, secure, and capable of real-
time data processing. Centralized architectures often face 
challenges related to security, communication overhead, and 
computational speed. Scalable architectures address these 
issues by employing layered safety measures, distributed 
intelligence, and cooperative communication. However, 
the integration of ML components into these architectures 
introduces unique functional safety challenges that must be 
addressed to ensure system-wide reliability [11]. Federated 
learning, for example, enhances scalability and data privacy 
by enabling vehicles to collaboratively train models without 
sharing raw data with a central server. Graph neural networks 
(GNNs) model inter-vehicle cooperation, allowing data 
exchange for coordinated decision-making on congested 
roads. Cooperative intelligence is essential for coordinating 
platoons, mergers, and intersections. Scalable architectures 
also depend on Vehicle-to-Everything (V2X) communication, 
which enables seamless collaboration between networks, 
infrastructure, and vehicles for timely and secure data 
exchange. However, scalability must not compromise safety. 
Therefore, these architectures incorporate dedicated safety 
modules featuring fail-safe redundancy, anomaly detection, 
and uncertainty quantification. These systems ensure 
that vehicles can resort to backup mechanisms—such as 
controlled stops or redundant braking systems—in the event 
of sensor malfunctions, communication failures, or cyber-
attacks. Predictive diagnostics further enhance reliability by 
identifying potential failures before they become critical. 
Overall, connected AV systems necessitate a multi-layer, 
cooperative, and safety-centric architectural model that 
can scale according to operational demands. By integrating 
distributed learning, cooperative intelligence, and resilient 
safety mechanisms, these architectures pave the way for 
the widespread deployment of autonomous vehicles, where 
efficiency, trustworthiness, and resilience are foundational to 
intelligent transportation systems.

Novel Contributions
This paper makes the following key contributions to the field 

Figure 2 : System Overview
The framework integrates five core layers: Perception 

(multi-sensor fusion), Decision (reinforcement learning), 
Communication (V2X technologies), Cooperation (graph 

neural networks), and Safety (anomaly detection and 
redundancy). Arrows indicate the flow of data and control 

between layers, highlighting the closed-loop, safety-centric 
design.

Figure 1 : Importance of Machine Learning in AVs
The diagram illustrates the core applications of ML, 

including sensor-based perception, trajectory prediction, 
adaptive decision-making, and safety assurance, which 

together enable robust autonomous operation in dynamic 
environments.
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of autonomous vehicle research:

A Novel Layered Architecture
We propose a comprehensive, safety-centric, and 
scalable architecture that integrates perception, decision, 
communication, cooperation, and safety layers into a unified 
framework for Connected Autonomous Vehicles (CAVs), 
designed to overcome the limitations of siloed and rigid 
rule-based systems.

Federated Learning for Scalable and Private 
Learning
We implement a federated learning framework tailored 
for AV fleets, enabling continuous, distributed model 
improvement while preserving data privacy and significantly 
reducing communication overhead compared to centralized 
approaches.

GNN-based Cooperative Intelligence
We leverage Graph Neural Networks to model and optimize 
multi-vehicle interactions dynamically, enabling collective 
decision-making for maneuvers like merging and intersection 
crossing, which significantly improves traffic efficiency and 
safety.

An Integrated Safety Assurance Layer
We introduce a proactive safety layer combining real-time 
autoencoder-based anomaly detection, Bayesian uncertainty 
quantification, and fail-safe mechanisms to ensure system 
resilience against sensor failures, adversarial attacks, and 
unforeseen edge cases.

Empirical Validation
We provide extensive empirical evaluation through a 
hybrid SUMO-CARLA co-simulation and real-world dataset 
benchmarking, demonstrating significant improvements 
in decision accuracy (21%), latency (34%), and collision rate 
(50%) over baseline systems.

Li t e r at u r e Su r v e y

Machine Learning in Autonomous Vehicles
Recent progress in autonomous driving is largely attributable 
to applying machine learning (ML) to core modules such as 
perception, localization, planning, and trajectory prediction. 
Convolutional Neural Networks (CNNs) have become the de 
facto standard for object detection and scene understanding, 
enabling real-time, reliable recognition of pedestrians, 
vehicles, and road infrastructure. Beyond perception, 
reinforcement learning (RL) has been employed for decision-
making and adaptive driving policies, allowing vehicles to 
learn optimal behaviors for complex traffic scenarios through 
trial and error in simulated environments. Furthermore, 
ML-based sensor fusion techniques have improved 
the robustness of localization and mapping systems in 

dynamic and uncertain operating conditions. Despite these 
advancements, ML models still face challenges related to 
generalization across diverse environments and ensuring 
reliability in edge cases.

Connected Vehicle Architectures
The evolution of Connected Autonomous Vehicles (CAVs) 
has been propelled by advances in communication systems, 
particularly Vehicle-to-Everything (V2X) protocols that enable 
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), 
vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P) 
communication. This connectivity facilitates cooperative 
navigation, improving collaborative maneuvers, congestion 
reduction, and accident avoidance. Several simulation 
platforms and architectures, such as Apollo and CARLA, have 
been developed to test and implement connected vehicle 
technologies. However, these systems often struggle with 
scalability due to the demands of real-time data processing 
and vehicle-to-vehicle interaction. As the number of 
connected vehicles increases, the need for low-latency, high-
reliability communication that supports rapid computation 
becomes critical.

Safety-Driven Frameworks
Safety and reliability are central concerns in autonomous 
vehicle research, given the life-critical nature of driving de-
cisions. Recent studies have focused on enhancing the ex-
plainability and transparency of ML-driven decision-making, 
where interpretable models are vital for garnering trust from 
regulators and the public. Research has also explored methods 
to improve the robustness of ML systems against adversarial 
perturbations and to quantify predictive uncertainty, enabling 
vehicles to operate more cautiously under uncertain condi-
tions. These safety-focused strategies strengthen AV systems 
by providing mechanisms to handle unexpected events. A 
significant challenge is the absence of unified validation and 
verification frameworks capable of comprehensively evaluat-
ing safety across diverse operational design domains. Existing 
testing approaches remain inadequately integrated, and ques-
tions regarding how to guarantee provable safety before large-
scale deployment remain open.

Research Gap Identification

Although the literature extensively covers the use of ML for 
autonomous vehicle perception, decision-making, and con-
nectivity, significant gaps remain. Most notably, current re-
search lacks an integrated framework that combines scalabil-
ity with safety-awareness for Connected Autonomous Vehicle 
(CAV) ecosystems. Techniques like federated learning offer 
potential for privacy-preserving, distributed model training 
in vehicular networks, avoiding communication bottlenecks 
and adapting to varying environments. Similarly, graph neural 
networks (GNNs) have demonstrated potential in modeling 
inter-vehicle cooperation by capturing spatiotemporal depen-
dencies in connected traffic networks. However, these meth-
ods are seldom integrated into a fail-safe system architecture 
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that incorporates redundancy and resilience against compo-
nent failures. The path forward involves designing scalable 
architectures that leverage the synergies of federated learning, 
cooperative intelligence, and robust failure-mode safety, en-
abling the efficient and safe real-world deployment of autono-
mous vehicles.

Me t h o d o lo g y

System Overview

Perception Layer
This layer utilizes a suite of sensors—including LiDAR, 
cameras, radar, and GPS—to perceive and interpret the 
vehicle’s surroundings. Deep learning models process raw 
sensor data to perform object detection, lane recognition, 
and environmental mapping. By fusing data from multiple 
sources, this layer generates a reliable representation of the 
external environment for higher-level decision-making.

Decision-Making Layer
This layer analyzes the perceived environment to select 
optimal driving actions, encompassing path planning, 
obstacle avoidance, and velocity adjustment tailored to traffic 
conditions. Techniques such as predictive modeling and 
reinforcement learning are employed to imbue the vehicle 
with human-like reasoning, enabling it to navigate complex 
scenarios. The output is a safe and efficient trajectory that 
guides the vehicle’s motion.

Communication Layer
This layer facilitates information exchange between the 
vehicle and external entities using Vehicle-to-Everything 
(V2X) technologies, including Vehicle-to-Vehicle (V2V), 
Vehicle-to-Infrastructure (V2I), and Vehicle-to-Network 
(V2N) communication. This extends the vehicle’s situational 
awareness beyond its onboard sensors, enabling coordination 
with other vehicles, access to real-time traffic data, and 
enhanced performance in connected driving scenarios 
through low-latency, high-bandwidth links.

Cooperation Layer
Building upon the communication layer, this layer enables 
collaborative behaviors among connected autonomous 
vehicles. Using algorithms such as graph neural networks 
(GNNs) and distributed learning, a group of vehicles can 
make collective decisions regarding intent sharing, route 
negotiation, and group-level traffic flow optimization. This 
cooperative intelligence enhances safety and efficiency 
in maneuvers such as merging, intersection crossing, and 
platooning.

Safety Layer

This foundational layer ensures system robustness and 
resilience against uncertainties, sensor failures, or malicious 
attacks. It incorporates adversarial robustness, uncertainty 
quantification, and fail-safe redundancy to guarantee safe 
operation. In critical situations, this layer triggers fallback 
mechanisms—such as controlled stops or manual override—
to prevent accidents. The integration of explainability and 
validation frameworks helps achieve regulatory compliance 
and instill confidence in the autonomous driving system 
(ADS).

In the proposed architecture, sensor data first passes 
through the ML perception and decision-making layers, 
which extract features and generate candidate actions. These 
locally processed models are periodically updated using 
Federated Learning (FL) to ensure fleet-wide adaptability 
while preserving privacy. The outputs of ML and FL are 
then integrated in the Graph Neural Network (GNN)-based 
cooperation layer, where vehicles exchange state and 
intention information to optimize collective traffic behavior. 
Finally, all decisions pass through the safety layer, which 
applies anomaly detection, uncertainty quantification, and 
fail-safe redundancy to ensure resilient operation under all 
conditions.

Perception and Sensor Fusion
The perception module is a critical component of the 
proposed architecture, enabling the system to accurately 
interpret its surroundings and construct a coherent model 
of the driving environment. We employ state-of-the-art deep 
learning models, including Convolutional Neural Networks 
(CNNs) and Transformer architectures, for object detection 
and tracking. CNNs excel at extracting spatial features from 
camera images, allowing for precise identification of road 
signs, pedestrians, vehicles, and lane markings. Transformers 
are leveraged for their ability to capture long-range 
dependencies and contextual relationships in sequential 
data, thereby enhancing tracking performance in dynamic 
and cluttered scenes. The synergistic use of CNNs for local 
feature extraction and Transformers for spatiotemporal 
reasoning enables robust multi-object detection and tracking 
under challenging conditions, such as adverse weather, low 
light, and occlusions.

To further enhance reliability, we implement multi-sensor 
fusion to integrate complementary data from LiDAR, radar, 
GPS, and cameras. LiDAR provides precise geometric and 
depth information, radar offers robustness in poor weather, 
and cameras deliver rich semantic data. Sensor fusion is 
achieved through a hybrid framework combining classical 
and learning-based methods. Kalman filtering is applied for 
recursive state estimation, noise reduction, and temporally 
coherent prediction of object trajectories. Additionally, 
attention mechanisms adaptively weight the contributions 
of each sensor based on contextual cues, prioritizing the 
most reliable data source under varying conditions. For 
instance, radar and LiDAR inputs may be weighted more 
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heavily under low visibility, while camera data may be favored 
in clear daylight conditions. Through probabilistic filtering 
and attention-based fusion, the perception layer constructs 
a accurate online environmental model, which is crucial 
for downstream decision-making and safe autonomous 
navigation.

Federated Learning for Scalability
A major challenge in deploying large-scale autonomous 
vehicle (AV) systems is the need to continuously improve 
machine learning models in a manner that is both scalable 
and privacy-preserving. Traditional centralized training 
methods, which involve uploading raw sensor data 
from multiple vehicles to a central server, are often 
infeasible due to excessive bandwidth requirements, high 
communication overhead, and privacy concerns. To address 
this, our architecture incorporates Federated Learning (FL), 
a distributed machine learning paradigm that enables each 
vehicle to train models locally on its own sensory and driving 
data. Only model updates (e.g., gradients or weights) are sent 
to a central aggregator, eliminating the need to transmit raw 
data. This approach not only safeguards user privacy—a 
significant concern for potential adopters as identified in user 
studies [12]—but also substantially reduces communication 
costs.

Federated learning facilitates scalability across 
geographically dispersed fleets, where vehicles encounter 
conditions that vary by road type, weather, and driving 
patterns. Through iterative aggregation, the global model 
assimilates these diverse experiences while preserving 
individual data security. This enables collaborative vehicles 
to adapt more rapidly to new traffic patterns or regulations. 
Techniques such as federated averaging, differential privacy, 
and secure aggregation are integrated to enhance security, 
mitigate the risk of model poisoning attacks, and ensure 
fairness across clients. From a systems perspective, FL reduces 
reliance on large data centers, improving the architecture’s 
energy efficiency and cost-effectiveness. Furthermore, as a 
distributed learning method, FL aligns naturally with edge 
computing, allowing AVs to perform learning and inference 

with minimal latency—a critical advantage for safety-critical 
decision-making. By combining scalability, data privacy, and 
efficient utilization of distributed data, federated learning 
forms the backbone of our proposed architecture, enabling 
autonomous vehicles to learn collectively while maintaining 
safety and trust.

Graph Neural Networks for Cooperation
Cooperation among vehicles is essential for the safe and 
efficient operation of connected autonomous vehicle (CAV) 
ecosystems, particularly in dense traffic, at intersections, 
and during highway merging. To enable this cooperative 
intelligence, we employ Graph Neural Networks (GNNs) to 
model inter-vehicle communication and decision-making. 
In this abstraction, vehicles are represented as nodes in a 
dynamic graph, and communication links—established via 
Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) 
channels—are represented as edges. Node attributes capture 
state information such as position, velocity, and intent, while 
edges represent spatiotemporal relationships like relative 
distances and traffic flow dependencies.

Leveraging the inherent message-passing of GNNs, 
vehicles can share and aggregate information with their 
neighbors to learn collective traffic patterns and make 
coordinated decisions on a large scale. GNNs excel at 
capturing relational dependencies that extend beyond 
an individual vehicle’s field of view. For example, at an 
intersection, a single vehicle lacks sufficient situational 
awareness to accurately predict the actions of others. GNN-
based cooperation aggregates local observations from 
multiple vehicles, allowing the system to infer overall traffic 
flow and optimize maneuvers such as yielding, platooning, 
and lane merging. This collaborative approach leads to 
significantly improved decision-making with a reduced risk 
of collisions or deadlocks. Moreover, the graph structure 
dynamically adapts to changes in network topology—such 
as vehicles entering or leaving communication range—
ensuring robustness in real-world traffic conditions. From a 
computational standpoint, integrating GNNs into federated 
and distributed frameworks enhances scalability by enabling 

Table 1: Quantitative performance comparison of the proposed architecture against a centralized baseline system.

Metric Definition Baseline 
Performance

Proposed 
Architecture 
Performance

Improvement

Decision 
Accuracy

Percentage of driving actions deemed safe 
and optimal against a ground truth policy. 73% 94% 21% Improvement

E2E Latency Average time delay from perception input 
to control actuation (ms). 150 ms 99 ms 34% Reduction

Collision Rate Number of collisions per 1000 simulation 
hours. 2 1 50% Reduction

Communication 
Overhead

Average data transmitted per vehicle per 
hour (GB). 5.2 GB 1.8 GB 65% Reduction
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decentralized model training. Vehicles can learn both 
cooperative strategies and local driving policies without 
centralized control, reducing latency and eliminating single 
points of failure. Our results demonstrate that GNN-based 
cooperation provides a versatile mechanism for achieving 
collective intelligence in CAVs, contributing to safer, 
smoother, and more energy-efficient traffic systems.

Safety Layer and Anomaly Detection
The safety layer is the cornerstone of the proposed AV 
architecture, providing system resilience against uncertainty, 
sensor failures, or malicious attacks, building upon 
established strategies for ML safety [11]. A core component 
of this layer is real-time anomaly detection, which identifies 
deviations from normal operating behavior. We utilize 
autoencoders trained on normal driving data to learn 
compressed latent representations of expected patterns, a 
technique aligned with practical implementations for error 
detection [11]. During operation, if the reconstruction error 
exceeds a predefined threshold, the system flags the input 
as anomalous—potentially indicating a sensor malfunction, 
cyber-attack, or unexpected behavior—and triggers a safety 

alert.
Complementing this, Bayesian uncertainty estimation 

provides probabilistic confidence measures for perception 
and decision outputs, enabling the vehicle to assess the 
reliability of its predictions. This approach combines 
deterministic anomaly detection with probabilistic 
uncertainty modeling. Together, they enable the system 
to differentiate rare-but-valid scenarios from genuinely 
hazardous conditions. The safety layer also incorporates 
fail-safe mechanisms, including redundant braking systems 
that offer alternative emergency stopping methods in case 
of actuator failure. Fallback controllers assume command if 
the primary learning-based controllers drive the vehicle into 
an unsafe or unpredictable state, executing rule-based safe 
maneuvers or initiating controlled stops.

Furthermore, predictive diagnostics continuously 
monitor the health of hardware and software subsystems. 
Predictive maintenance algorithms analyze trends in sensor 
and actuator wear or performance degradation, forecasting 
potential failures before they occur. This proactive approach 
generates maintenance alerts and prevents malfunctions 
during critical operations. Through this layered safety 

Figure 3: Graph representing Performance Comparison
The bar chart quantifies the percentage improvement in key metrics: decision accuracy (+21%), latency reduction 

(-34%), and collision rate (-50%), demonstrating the efficacy of the integrated ML-driven approach.



Machine Learning-Enhanced Scalable Architectures for Safe and Connected Autonomous Vehicles

International journal of humanities and information technology, Volume 7, Issue 3 (2025) 73

approach—integrating real-time anomaly detection, 
uncertainty-aware decision-making, and robust failure 
recovery—the architecture ensures structured responses to 
both anticipated and unanticipated events. The safety layer 
not only enhances system reliability and facilitates regulatory 
compliance but also establishes a foundation for the long-
term deployment of autonomous vehicles in complex real-
world environments, adhering to a methodological approach 
for functional safety in complex systems [13].

Re s u lts a n d Di s c u s s i o n

Simulation Setup
To evaluate the efficacy of the proposed scalable autonomous 
vehicle (AV) architecture, we conducted comprehensive 
experiments using both traffic-level and perception-level 
simulators. The Simulation of Urban Mobility (SUMO) 
was employed to model large-scale traffic interactions, 
leveraging its strength in simulating urban traffic flow and 
vehicle interactions on roads with diverse vehicle types. We 
simulated scenarios involving 500 connected autonomous 
vehicles (CAVs) under various traffic conditions, including 
highway merging, urban intersections, and cooperative 
platooning. Realistic vehicle mobility traces were generated 
to emulate driving dynamics, communication latencies, and 
variable traffic densities, thereby testing the robustness and 
scalability of the cooperation and communication layers.

For perception and sensor-level assessment, the 
CARLA simulator was utilized due to its high-fidelity 3D 
environments featuring realistic weather, lighting, and 
traffic conditions. CARLA facilitated the testing of sensor 
fusion modules integrating LiDAR, radar, and camera data 
under adverse conditions such as rain, fog, and occluded 
scenes. By integrating CARLA with SUMO, we established a 
co-simulation framework where SUMO’s traffic flow dynamics 
provided the basis for realistic sensor data generation in 
CARLA, creating an end-to-end validation environment. 
Additionally, we benchmarked our perception models on real-
world datasets—KITTI and Argoverse—which are annotated 
for object detection, tracking, and motion forecasting. This 
approach balanced the trade-off between simulation-based 
scalability and real-world generalization. Experiments were 
conducted across various scenarios, including different V2X 
communication ranges, adversarial sensor noise injection, 
and hardware fault injections, to evaluate the system’s fail-
safe responses. This hybrid simulation environment enabled 
systematic testing of perception accuracy, cooperative 
decision-making, federated learning scalability, and safety 
mechanism robustness in a controlled yet realistic setting.

Performance Metrics

Decision Accuracy
This metric measures the system’s ability to select safe 
and optimal actions in dynamic traffic. The observed 21% 

improvement is attributed to the combination of deep 
learning-based perception and GNN-based cooperation, 
which minimizes path planning errors and enhances the 
reliability of complex maneuvers like merging, overtaking, 
and intersection navigation through context-aware modeling 
and inter-vehicle communication.

Latency
Latency refers to the time delay between perception input 
and control output, a critical factor for real-time safe driving. 
The 34% reduction in latency is primarily due to federated 
learning and edge-level inference, which diminish the need 
for centralized data exchange. This ensures responsive 
decision-making even under high traffic loads and enables 
timely interventions for critical maneuvers.

Collision Rate
This metric quantifies the frequency of accidents or near-
misses during simulations. The 50% reduction demonstrates 
the effectiveness of the safety layer, including its anomaly 
detection and redundancy mechanisms. Fallback controllers 
and cooperative decision-sharing allow vehicles to proactively 
avoid dangerous situations, significantly enhancing overall 
system safety.

The architecture maintained baseline performance levels 
as the number of vehicles scaled to 500, demonstrating 
its scalability. However, communication overhead and 
computational load present challenges for further scaling. 
While federated learning alleviates some bottlenecks, future 
work will require optimized communication protocols and 
fully decentralized coordination to achieve larger-scale 
deployment.

Di s c u s s i o n
The experimental results validate the feasibility and 
effectiveness of integrating machine learning-enhanced 
architectures into connected autonomous vehicle (CAV) 
systems. The proposed framework demonstrates significant 
improvements in safety, latency, and decision accuracy 
compared to baseline methods, contributing to more reliable 
and efficient autonomous driving. State-of-the-art perception 
models, particularly CNNs and Transformers, achieve robust 
environmental perception under diverse conditions. When 
combined with sensor fusion strategies based on Kalman 
filtering and attention mechanisms, they enhance tracking 
performance amidst noise and uncertainty, resulting in faster 
reaction times and safer maneuver execution in complex 
traffic scenarios.

A key advantage of the proposed architecture is its use 
of federated learning for distributed model training. By 
transmitting only model parameter updates instead of raw 
data, federated learning reduces communication overhead 
and addresses data privacy concerns. This approach also 
enables adaptation to varied driving environments, as 
vehicles contribute local knowledge to enhance the global 
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model without compromising raw data privacy. Furthermore, 
GNNs significantly enhance cooperative decision-making by 
allowing vehicles to learn collective traffic patterns and model 
interdependencies. This leads to smoother interactions 
in multi-vehicle scenarios where coordination is critical 
for safety, such as merging, platooning, and intersection 
crossing.

However, several challenges and limitations 
must be addressed to transition from 
simulation to real-world deployment.
•	 Federated Learning in Congested Networks:  While FL 

reduces bandwidth, the synchronous aggregation 
of updates from hundreds of vehicles could still face 
significant latency in real-world scenarios with network 
congestion or inconsistent 5G/6G coverage. Future 
work will need to investigate asynchronous FL protocols 
and more efficient compression techniques for model 
updates to ensure robustness under imperfect network 
conditions.

•	 Hardware and Computational Constraints: The proposed 
multi-sensor fusion and deep learning models are 
computationally intensive. Deploying them on 
embedded vehicle hardware with strict power and 
latency budgets remains a challenge. Optimizing 
models for specific hardware (e.g., TPUs, GPUs) through 
quantization and pruning will be a critical next step.

•	 Generalization to Extreme Edge Cases: While the safety 
layer handles many anomalies, the “long tail” of rare, 
unforeseen scenarios (e.g., extreme weather, complex 
multi-agent interactions with irrational actors) remains 
a fundamental challenge for ML-based systems. 
Continuous learning and validation using real-world 
driving data, along with formal methods for safety 
verification, are essential to bridge this gap.

•	 Scalability of Cooperative Layers:  The GNN-based 
cooperation layer, while effective, may face scalability 
issues as the number of vehicles in a communication 
cluster grows very large (e.g., in dense urban centers). 
Decentralized and hierarchical coordination strategies 
will be necessary to manage this complexity.

Despite these limitations, the proposed architecture 
optimizes communication protocols and employs 
decentralized message-passing strategies to enable 
low-latency cooperation among hundreds of vehicles. 
It integrates anomaly detection, uncertainty estimation, 
and fail-safe mechanisms to ensure robustness against 
partial system failures or adversarial inputs. These results 
position ML-enabled, safe, and cooperative architectures 
as a promising approach for the scalable deployment of 
autonomous vehicles, pending the resolution of these 
practical deployment challenges.

Co n c lu s i o n
This paper has presented a machine learning-based 
architecture for connected autonomous vehicles (CAVs) 

designed to address critical challenges in scalability and safety. 
The proposed framework incorporates dedicated layers for 
perception, decision-making, communication, cooperation, 
and safety assurance. It employs advanced sensor fusion 
techniques, CNNs, Transformers, and reinforcement learning 
strategies to achieve reliable environmental perception. 
Adaptive driving policies enhance trajectory prediction 
and maneuver execution. We leverage federated learning 
to improve scalability and data privacy. This approach 
reduces server load and communication overhead, while 
also enabling dynamic adaptation to heterogeneous 
environments. Furthermore, graph neural networks (GNNs) 
facilitate intent communication, capture spatiotemporal 
dependencies, and enable collective learning of traffic 
patterns, resulting in improved coordination in complex 
multi-agent scenarios, reduced collision rates, and enhanced 
traffic efficiency.

Safety remains the core tenet of the architecture, with the 
safety layer providing resilience through anomaly detection, 
uncertainty estimation, and fail-safe redundancy. Advanced 
computational techniques, such as autoencoder-based 
anomaly detection and Bayesian uncertainty quantification, 
improve prediction reliability. Redundant braking systems, 
fallback controllers, and predictive diagnostics ensure the 
vehicle can execute corrective responses to both anticipated 
and unanticipated failures. Simulation results validate the 
integrated framework, demonstrating a 21% increase in 
decision accuracy, a 34% reduction in latency, and a 50% 
decrease in collision rates.

Future work will focus on bridging the 
gap between simulation and real-world 
deployment through several concrete steps:

Physical Fleet Testing
The next critical phase is to implement and validate core 
components of this architecture on a physical fleet of 
autonomous vehicles to test performance under real-world 
constraints and unpredictable environments.

Integration with Advanced Networks
We will explore tight integration with 5G-Advanced and 6G 
vehicular networks to leverage their ultra-reliable low-latency 
communication (URLLC) capabilities, which are essential for 
the real-time demands of federated learning and GNN-based 
cooperation at scale.

Hardware-Aware Optimization
We will focus on hardware-in-the-loop testing and optimizing 
the ML models for deployment on embedded systems, 
focusing on energy efficiency and computational latency.

Robustness to Adversaries
As outlined, implementing quantum-safe cryptography and 
robust defensive techniques against adversarial attacks on 
ML models will be prioritized to secure the entire system 
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lifecycle.
By addressing these steps to enhance scalability, safety, 

and security, the proposed framework represents a significant 
step toward realizing the vision of reliable, intelligent, and 
connected autonomous transportation systems.
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